Những câu hỏi liên quan
TD
Xem chi tiết
HG
23 tháng 2 2017 lúc 22:01

=> \(f\left(x\right)=x^{2014}-\left(2014+1\right)x^{2013}+\left(2014+1\right)x^{2012}+...-\left(2014+1\right)x+2014+1\)

Mà x = 2014

=> \(f\left(2014\right)=x^{2014}-\left(x+1\right)x^{2013}+\left(x+1\right)^{2012}+...-\left(x+1\right)x+x+1\)

\(=x^{2014}-x^{2014}+x^{2013}-x^{2013}-x^{2012}+....-x^2-x+x+1\)

\(=1\)

=> f(2014) = 1

Bình luận (0)
TD
23 tháng 2 2017 lúc 22:04

thank nha

Bình luận (0)
PH
Xem chi tiết
PT
Xem chi tiết
KT
Xem chi tiết
H24
5 tháng 3 2016 lúc 12:56

với x=2014

=> f(x)=x2014-(x+1)x2013+(x+1)x2012-...-(x+1)x+(x+1)

=x2014-x2014-x2013+x2013+x2012-...-x2-x+x+1

=1

Bình luận (0)
KT
5 tháng 3 2016 lúc 13:18

cảm ơn nha

Bình luận (0)
AN
Xem chi tiết
TD
Xem chi tiết
DA
Xem chi tiết
DH
Xem chi tiết
LL
Xem chi tiết
DH
4 tháng 4 2015 lúc 20:20

Ta có f(x) = 2015/[x(x + 2)]

=> f(1) = 2015/(1.3) = (2015/2)(1/1 - 1/2)

     f(2) = 2015/(2.4) = (2015/2)(1/2 - 1/4)

     f(3) = 2015/(3.5) = (2015/2)(1/3 - 1/5)

.........................................

=> S = f(1)+f(2)+f(3)+...+f(2015)

        = (2015/2)(1 + 1/2 - 1/2016 - 1/2017)

Bình luận (0)