Tìm x biết: \(\frac{x+4}{2012}+\frac{x+3}{2013}+\frac{x+2}{2014}+\frac{x+1}{2015}\)
Tìm x biết
\(\frac{x-1}{2015}+\frac{x-2}{2014}-\frac{x-3}{2013}=\frac{x-4}{2012}\)
CÓ: \(\frac{x-1}{2015}+\frac{x-2}{2014}-\frac{x-3}{2013}-\frac{x-4}{2012}=0\)\(0\)
<=>\(\left(\frac{x-1}{2015}-1\right)+\left(\frac{x-2}{2014}-1\right)-\left(\frac{x-3}{2013}-1\right)-\left(\frac{x-4}{2012}-1\right)=0\)
<=>\(\frac{x-2016}{2015}+\frac{x-2016}{2014}-\frac{x-2016}{2013}-\frac{x-2016}{2012}=0\)
<=>\(\left(x-2016\right)\left(\frac{1}{2015}+\frac{1}{2014}-\frac{1}{2013}-\frac{1}{2012}\right)=0\)
Do:\(\left(\frac{1}{2015}+\frac{1}{2014}-\frac{1}{2013}-\frac{1}{2012}\right)\ne0\)
=>\(x-2016=0\)
<=>\(x=2016\)
Tìm x biết: \(\frac{x+1}{2015}+\frac{x+2}{2014}+\frac{x+3}{2013}+\frac{x+4}{2012}\) = -4
tìm x, biết:
\(\frac{x-1}{2015}+\frac{x-2}{2014}-\frac{x-3}{2013}=\frac{x-4}{2012}\)
Tìm x biết:
\(\frac{x+5}{2012}+\frac{x+4}{2013}=\frac{x+3}{2014}+\frac{x+2}{2015}\)
\(\frac{x+5}{2012}+\frac{x+4}{2013}=\frac{x+3}{2014}+\frac{x+2}{2015}\)
\(\Leftrightarrow\frac{x+5}{2012}+1+\frac{x+4}{2013}+1=\frac{x+3}{2014}+1+\frac{x+2}{2015}+1\)
\(\frac{x+5+2012}{2012}+\frac{x+4+2013}{2013}=\frac{x+3+2014}{2014}+\frac{x+2+2015}{2015}\)
\(\frac{x+2017}{2012}+\frac{x+2017}{2013}=\frac{x+2017}{2014}+\frac{x+2017}{2015}\)
\(\frac{x+2017}{2012}+\frac{x+2017}{2013}-\frac{x+2017}{2014}-\frac{x+2017}{2015}=0\)
\(\left(x+2017\right)\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\right)=0\)
Mà \(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}>0\)
\(\Rightarrow x+2017=0\)
\(\Rightarrow x=-2017\)
\(\frac{x+5}{2012}+1+\frac{x+4}{2013}+1=\frac{x+3}{2014}+1+\frac{x+2}{2015}+1\)
\(\frac{x+2017}{2012}+\frac{x+2017}{2013}-\frac{x+2017}{2014}-\frac{x+2017}{2015}=0\)
\(\left(x+2017\right)\cdot\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\right)\)
Vì \(\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\right)\ne0\)
suy ra \(x+2017=0\)
suy ra \(x=-2017\)
Vậy \(x=-2017\)
Ta có:
\(\frac{x+5}{2012}+\frac{x+4}{2013}=\frac{x+3}{2014}+\frac{x+2}{2015}\)
\(\frac{x+5}{2012}+1+\frac{x+4}{2013}+1=\frac{x+3}{2014}+1+\frac{x+2}{2015}+1\)
\(\frac{x+5}{2012}+\frac{2012}{2012}+\frac{x+4}{2013}+\frac{2013}{2013}=\frac{x+3}{2014}+\frac{2014}{2014}+\frac{x+2}{2015}+\frac{2015}{2015}\)
\(\frac{x+2017}{2012}+\frac{x+2017}{2013}=\frac{x+2017}{2014}+\frac{x+2017}{2015}\)
\(\frac{x+2017}{2012}+\frac{x+2017}{2013}-\frac{x+2017}{2014}-\frac{x+2017}{2015}=0\)
\(\left(x+2017\right)\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\right)=0\)
\(=>\orbr{\begin{cases}x+2017=0\\\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}=0\end{cases}}\)
Mà: \(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}>0\)
=> x + 2017 = 0 => x = -2017
Tìm x biết
\(\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2014}+\frac{1}{2015}\right).x=\frac{2014}{1}+\frac{2013}{2}+\frac{2012}{3}+...+\frac{2}{2013}+\frac{1}{2014}\)
có 2014/1+2013/2+2012/3+...+2/2013+1/2014=[1+(2013/2)]+[1+(2012/3)]+...+[1+(2/2013)]+[1+(1/2014)]+1
=2015/2+2015/3+...+2015/2014+2015/2015=2015.[1/2+1/3+..+1/2015)
vậy (1/2+1/3+...+1/2015).x=(1/2+1/3+...+1/2015).2015
x=2015
Tìm x , biết :
\(\frac{x-1}{2015}+\frac{x}{2014}+\frac{1}{503}=\frac{x-3}{2013}+\frac{x}{2012}+\frac{1}{1007}\)
tìm x
\(\frac{x+4}{2012}+\frac{x+3}{2013}=\frac{x+2}{2014}+\frac{x+1}{2015}\)
=> \(\left(\frac{x+4}{2012}+1\right)+\left(\frac{x+3}{2013}+1\right)=\left(\frac{x+2}{2014}+1\right)+\left(\frac{x+1}{2015}+1\right)\)
=> \(\frac{x+2016}{2012}+\frac{x+2016}{2013}=\frac{x+2016}{2014}+\frac{x+2016}{2015}\)
=> \(\frac{x+2016}{2012}+\frac{x+2016}{2013}-\frac{x+2016}{2014}-\frac{x+2016}{2015}=0\)
=> \(\left(x+2016\right).\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\right)=0\)
=> x + 2016 = 0 ( Vì \(\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\right)\ne0\)
=> x = -2016
\(\Rightarrow\frac{x+4}{2012}+1+\frac{x+3}{2013}+1=\frac{x+2}{2014}+1+\frac{x+1}{2015}+1\)
\(\Leftrightarrow\frac{x+2016}{2012}+\frac{x+2016}{2013}=\frac{x+2016}{2014}+\frac{x+2016}{2015}\)
\(\Leftrightarrow\frac{x+2016}{2012}+\frac{x+2016}{2013}-\frac{x+2016}{2014}-\frac{x+2016}{2015}=0\)
\(\Leftrightarrow\left(x+2006\right)\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\right)=0\)
\(\Rightarrow x+6=0\) ( vì \(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\) khac 0 )
=> x = -6
Tìm x biết
\(\frac{x+1}{2011}+\frac{x+2}{2012}+\frac{x+3}{2013}=\frac{x+4}{2014}+\frac{x+5}{2015}\)
TÌM X
\(\frac{X+1}{2015}+\frac{X+2}{2014}+\frac{X+3}{2013}+\frac{X+4}{2012}=4\)\(4\)
\(\frac{x+1}{2015}\)+\(\frac{x+2}{2014}\)+\(\frac{x+3}{2013}\)+\(\frac{x+4}{2012}\)=44
\(\frac{x+1}{2015}\)+1+\(\frac{x+2}{2014}\)+1+\(\frac{x+3}{2013}\)+1+\(\frac{x+4}{2012}\)+1=44+4
\(\frac{x+2016}{2015}\)+\(\frac{x+2016}{2014}\)+\(\frac{x+2016}{2013}\)+\(\frac{x+2016}{2012}\)=48
(x+2016)(\(\frac{1}{2015}\)+\(\frac{1}{2014}\)+\(\frac{1}{2013}\)+\(\frac{1}{2012}\))=48
tu lam tiep.Nho k tui voi
\(\Rightarrow\frac{x+1}{2015}=1;\frac{x+2}{2014}=1;\frac{x+3}{2013}=1;\frac{x+4}{2012}=1\)
\(vì\)\(1+1+1+1=4\)
\(\text{mUỐN PHÂN SÓ =1 THÌ TỬ SỐ = MẪU SỐ}\)
\(X+1=2015\)
\(X=2014\)
tƯƠNG TỰ CZZZZZZZZZZZZ