Tìm giá trị lớn nhất của biểu thức.
B=|x- 2006| -|2007- x|
tìm giá trị nhỏ nhất của biểu thức: P= l x-2006 l + l x-2007 l +2006
Mik làm tóm tắt:
ta có P=|x-2006|+|2007-x|+2006>=x-2006+2007-x+2006=2007
vậy min P=2007 khi:
x-2006>=0 và 2007-x>=0
=> 2006<=x<=2007
Tìm giá trị lón nhất của biểu thức
a. B=|x- 2006| -|2007- x|
Mk sửa lại đề nha tìm GTNN
a) B=|x- 2006| -|2007- x|
Vì |x- 2006|\(\ge\)0
|2007- x|\(\ge\)0
Suy ra:|x- 2006| -|2007- x|\(\ge\)0
Dấu = xảy ra khi x-2006=0;x=2006
2007-x=0;x=2007
Vậy Min B=0 khi x=2006
x=2007
\(B=\left|x-2006\right|-\left|2007-x\right|=\left|x-2006\right|-\left|x-2007\right|\)
Áp dụng bđt: \(\left|A\right|-\left|B\right|\le\left|A-B\right|\)
=>\(B\le\left|x-2006-x+2007\right|=1\)
Vậy GTLN của B là 1 khi \(2006\le x\le2007\)
Tìm giá trị nhỏ nhất của biểu thức
a. B=|x- 2006| -|2007- x|
b. C= y^2 +|x-16|-9
a)|x- 2006| -|2007- x|
Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|x-2006\right|-\left|2007-x\right|\ge\left|x-2006-2007-x\right|=4013\)
Dấu = khi \(\left(x-2006\right)\left(2007-x\right)\ge0\)
\(\Rightarrow2006\le x\le2007\)
\(\Rightarrow\begin{cases}2006\le x\le2007\\\left(x-2006\right)\left(2007-x\right)=0\end{cases}\)\(\Rightarrow\begin{cases}x=2006\\x=2007\end{cases}\)
Vậy MinB=4013 khi x=2006 hoặc x=2007
b)Ta có:\(\begin{cases}y^2\\\left|x-16\right|\end{cases}\ge0\)
\(\Rightarrow y^2+\left|x-16\right|-9\ge0-9=-9\)
\(\Rightarrow C\ge-9\)
Dấu = khi \(\begin{cases}y^2=0\\\left|x-16\right|=0\end{cases}\)\(\Rightarrow\begin{cases}x=16\\y=0\end{cases}\)
Vậy MinC=-9 khi x=16 và y=0
TÌM X ĐỂ BIỂU THỨC CÓ GIÁ TRỊ BÉ NHẤT
2007-2006:(15-X
1) Cho biểu thức A=2006-x/6-x. tìm giá trị nguyên của x để A đạt giá trị lớn nhất. tìm giá trị lớn nhất đó.
2) tìm giá trị nhỏ nhất của biểu thức: P=4-x/14-x;(x thuộc Z). khi đó x nhận giá trị nguyên nào ?
tach 14-x = 10-4-x roi sau do chac ban cung phai tu biet lam
Tìm giá trị nhỏ nhất của biểu thức
a. B=|x- 2006| -|2007- x|
b. C= y^2 +|x-16|-9
a. B=|x- 2006| -|2007- x|
Vì |x- 2006|\(\ge\)0
|2007- x|\(\ge\)0
Suy ra:|x- 2006| -|2007- x|\(\ge\)0
Dấu = xảy ra khi x-2006=0;x=2006
2007-x=0;x=2007
Vậy Min B=0 khi x=2006;x=2007
b) C= y2 +|x-16|-9
Vì y2\(\ge\)0
|x-16|\(\ge\)0
Suy ra: y2 +|x-16|-9\(\ge\)-9
Dấu = xảy ra khi x-16=0;x=16
y2=0;y=0
Vậy Max C=-9 khi x=16;y=0
Cho biểu thức \(A=\frac{2006-x}{6-x}\).Tìm giá trị nguyên của x để A đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó .
\(A=\frac{2006-x}{6-x}=1+\frac{2000}{6-x}\)
Để \(1+\frac{2000}{6-x}\) đạt GTLN <=> \(\frac{2000}{6-x}\) đạt GTLN
Mà x nguyên => 6 - x là số nguyên dương nhỏ nhất Tức là 6 - x = 1 => x = 5
Vậy GTNN của A là \(\frac{2006-5}{6-5}=2001\) tại x = 5
x=5;A=2001
tự tìm hiểu cách giải nha.Tiện thể tôi không phải là uzumaki naruto đâu
Cho biểu thức \(A=\frac{2006-x}{6-x}\). Tìm giá trị nguyên của x để A đạt giá trị lớn nhất . Tìm giá trị lớn nhất đó
\(A=\frac{2006-x}{6-x}=1\frac{2000}{6-x}\)
=> để A đạt gia trị lớn nhất thì 6-x phải đạt giá trị nhỏ nhất (>0) và x khác 6
A lớn nhất khi 6-x nên => 6-x=1
=> x=5
giá trị lớn nhất của A khi đó là:
A=(2006-5)/(6-5)=2001
Tìm giá trị nhỏ nhất của A = |x - 2006| + |2007 - x|
Áp dụng BĐT |a|+|b|>=|a+b| ta có:
\(\left|x-2006\right|+\left|2007-x\right|\ge\left|x-2006+2007-x\right|=1\)
\(\Rightarrow A\ge1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x-2006\right|=0\\\left|2007-x\right|=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2006\\x=2007\end{cases}}\)
Vậy MinA=1<=>x=2006 hoặc x=2007