Những câu hỏi liên quan
NT
Xem chi tiết
MW
Xem chi tiết
PK
Xem chi tiết
PK
1 tháng 3 2017 lúc 21:41

ai lam on giup to voi

Bình luận (0)
TD
Xem chi tiết
TD
Xem chi tiết
HY
Xem chi tiết
HN
6 tháng 9 2016 lúc 18:13

Ta có : \(2x^2+y^2+3xy+3x+2y+2=0\)

\(\Leftrightarrow y^2+y\left(3x+2\right)+2x^2+3x+2=0\)

Nhận thấy pt trên là phương trình bậc hai ẩn y  . Do đó ta xét 

\(\Delta=\left(3x+2\right)^2-4\left(2x^2+3x+2\right)=x^2-4\)

Để pt có nghiệm thì \(\Delta\ge0\Rightarrow x^2-4\ge0\) \(\Rightarrow\left[\begin{array}{nghiempt}x\ge2\\x\le-2\end{array}\right.\)

Mà x,y là nghiệm nguyên của pt nên \(x^2-4\) là bình phương của một số hữu tỉ , đặt \(x^2-4=k^2\Rightarrow\left(x-k\right)\left(x+k\right)=4\) . Ta luôn có x + k > x - k với k > 0 

Xét các trường hợp với x-k và x+k là các số nguyên được 

\(\begin{cases}x=2\\k=0\end{cases}\) và \(\begin{cases}x=-2\\k=0\end{cases}\)

Suy ra được : \(\begin{cases}x=-2\\y=2\end{cases}\) và \(\begin{cases}x=2\\y=-4\end{cases}\)

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
EC
10 tháng 9 2020 lúc 21:17

2x2 + y2 + 3xy + 3x + 2y + 2 = 0

<=> 8x2 + 4y2 + 12xy + 12x + 8y + 8 = 0

<=> (4y2 + 12xy + 9x2) + 4(3x + 2y) + 4 - x2 + 4 = 0

<=> (3x + 2y + 2)2 - x2 = -4

<=> (3x + 2y + 2 - x)(3x + 2y + 2 + x) = -4

<=> (2x + 2y + 2)(4x + 2y + 2) = -4

<=> (x + y + 1)(2x + y + 1) = -1

Xét các TH xảy ra <=>

\(\hept{\begin{cases}x+y+1=1\\2x+y+1=-1\end{cases}}\)

\(\hept{\begin{cases}x+y+1=-1\\2x+y+1=1\end{cases}}\)

(tự tính)

Bình luận (0)
 Khách vãng lai đã xóa
TA
10 tháng 9 2020 lúc 21:27

Ta có: \(2x^2+y^2+3xy+3x+2y+2=0\)

    \(\Leftrightarrow y^2+y.\left(3x+2\right)+2x^2+3x+2=0\)

Nhận thấy pt trên là phương trình bậc hai ẩn y. Do đó ta xét :

    \(\Delta=\left(3x+2\right)^2-4\left(2x^2+3x+2\right)=x^2-4\)

Để pt có nghiệm thì \(\Delta\ge0\)\(\Rightarrow\)\(x^2-4\ge0\)\(\Rightarrow\)\(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\)

Mà x,y là nghiệm nguyên của pt nên \(x^2-4\) là bình phương của một số hữu tỉ 

Đặt \(x^2-4=k^2\)\(\Rightarrow\)\(\left(x-k\right).\left(x+k\right)=4\)

Ta luôn có \(x+k>x-k\) với \(k>0\)

Xét các trường hợp với \(x-k\)\(x+k\)là các số nguyên được 

\(\hept{\begin{cases}x=2\\k=0\end{cases}}\)và  \(\hept{\begin{cases}x=-2\\k=0\end{cases}}\)

Suy ra được \(\hept{\begin{cases}x=-2\\y=2\end{cases}}\)và  \(\hept{\begin{cases}x=2\\y=-4\end{cases}}\)

Học tốt

Bình luận (0)
 Khách vãng lai đã xóa
H24
10 tháng 9 2020 lúc 21:39

2x2 + y2 + 3xy + 3x + 2y + 2 = 0

<=> 16x2 + 8y2 + 24xy + 24x + 16y + 16 = 0

<=> ( 4x )2 + 24x ( y + 1 ) + 8y2 + 16y + 16 = 0

<=> ( 4x )2 + 24x ( y + 1 ) + [ 3( y + 1 ) ]2 - [ 3( y + 1 ) ]2 + 8y+ 16y + 16 = 0

<=> ( 4x + 3y + 3 )2 - 9y2 - 18y - 9 + 8y2 + 16y + 16 = 0

<=> ( 4x + 3y + 3 )2 - ( y + 1 )2 = - 8

<=> ( y + 1 )2 - ( 4x + 3y + 3 )= 8

<=> 4 ( x + y + 4 ) . ( - 2 ) ( 2x + y + 2)  = 8

<=> ( x + y + 4 ) ( 2x + y + 1 ) = - 1

\(\Leftrightarrow\hept{\begin{cases}x+y+4=1\\2x+y+1=-1\end{cases}}\)hoặc \(\hept{\begin{cases}x+y+4=-1\\2x+y+1=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=2\\y=-4\end{cases}}\)hoặc \(\hept{\begin{cases}x=-2\\y=2\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
MT
Xem chi tiết
NL
30 tháng 7 2021 lúc 11:57

Với \(xy=0\) là nghiệm

Với \(xy\ne0\)

\(\Rightarrow\left\{{}\begin{matrix}y-\dfrac{2}{x}+\dfrac{3x}{y}=0\\\dfrac{y}{x}+x+\dfrac{2}{y}=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y-\dfrac{2}{x}=-\dfrac{3x}{y}\\x+\dfrac{2}{y}=-\dfrac{y}{x}\end{matrix}\right.\)

\(\Rightarrow\left(y-\dfrac{2}{x}\right)\left(x+\dfrac{2}{y}\right)=3\)

\(\Leftrightarrow xy-\dfrac{4}{xy}-3=0\)

\(\Rightarrow\left(xy\right)^2-3xy-4=0\Rightarrow\left[{}\begin{matrix}xy=-1\\xy=4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{y}\\x=\dfrac{4}{y}\end{matrix}\right.\) thế vào \(y^2+x^2y+2x=0\)

\(\Rightarrow\left[{}\begin{matrix}y^2+\dfrac{1}{y}-\dfrac{2}{y}=0\\y^2+\dfrac{16}{y}+\dfrac{8}{y}=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y^3=1\\y^3=-24\end{matrix}\right.\)

\(\Leftrightarrow...\)

Bình luận (0)