Tính :
\(-1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\)
Tính:\(1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\)
\(1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-....-\frac{1}{1024}\)
\(=1-\left(1-\frac{1}{2}\right)-\left(\frac{1}{2}-\frac{1}{4}\right)-.......-\left(\frac{1}{512}-\frac{1}{1024}\right)\)
\(=1-1+\frac{1}{2}-\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+....+\frac{1}{512}-\frac{1}{1024}\)
\(=-\frac{1}{1024}\)
\(1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-....-\frac{1}{1024}=1-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)
Đặt \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)
=> \(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
=> \(A=2A-A=1-\frac{1}{2^{10}}\)
=> \(1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-....-\frac{1}{1024}=1-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)
\(=1-A=1-\left(1-\frac{1}{2^{10}}\right)=1-1+\frac{1}{2^{10}}\)
\(=\frac{1}{2^{10}}\)
ta có \(A=1-\frac{1}{2}-\frac{1}{4}-...-\frac{1}{1024}\)
suy ra \(2A=2-1-\frac{1}{2}-...-\frac{1}{512}\)
suy ra \(2A-A=2-\frac{1}{1024}\)
suy ra \(A=\frac{2047}{1024}\)
tính: \(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-\frac{1}{16}-....-\frac{1}{1024}=?\)
tính \(-1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-......-\frac{1}{1024}\)
Tính A= \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...........+\frac{1}{512}+\frac{1}{1024}\)
\(2A=1+\frac{1}{2}+\frac{1}{4}+....+\frac{1}{512}\Rightarrow2A-A=1-\frac{1}{1024}=\frac{1023}{1024}\)
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}\)
\(2A=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}\)
\(2A-A=\left[1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}\right]-\left[\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}\right]\)
\(A=1-\frac{1}{2014}=\frac{2013}{2014}\)
#)Giải :
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\)
\(\Rightarrow2A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{11}}\)
\(\Rightarrow2A-A=\left(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{11}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{2}{2^3}+...+\frac{1}{2^{10}}\right)\)
\(\Rightarrow A=\frac{1}{2^{11}}-\frac{1}{2}\)
\(\Rightarrow A=-\frac{1023}{2048}\)
Tính:
\(-1-\frac{1}{2}-\frac{1}{4}-\frac{1}{6}-\frac{1}{8}-...-\frac{1}{1024}\)
\(-1-\frac{1}{2}-\frac{1}{4}-\frac{1}{6}-.....-\frac{1}{1024}\)
\(=-1-\left(1-\frac{1}{2}\right)-\left(\frac{1}{2}-\frac{1}{4}\right)-.....-\left(\frac{1}{512}-\frac{1}{1024}\right)\)
\(=-1-\left(1-\frac{1}{1024}\right)\)
\(=-1-\frac{1023}{1024}\)
\(=-\frac{2047}{1024}\)
Ai mún nhờ mk giải violympic vòng 1 300 đ ko
10 nghìn 1 lần nhé hoặc là xóa nick facebook (20 nghìn 1 lần)
Hoặc Hack facebook (10 nghìn 1 lên 500 )
Tính nhanh :
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+...+\frac{1}{512}+\frac{1}{1024}\)
Ta có : \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\)
Đặ A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\)(1)
=> 2A = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}+\frac{1}{2^9}\)(2)
Lấy (2) trừ (1) theo vế ta có :
2A - A = \(\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\right)\)
=> A = \(1-\frac{1}{2^{10}}=\frac{2^{10}-1}{2^{20}}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{10}}\)
\(\Leftrightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^9}\)
\(\Rightarrow2A-A=1-\frac{1}{2^{10}}=\frac{1023}{1024}\)
Xin lỗi bạn Trần thị mai Chi nha mk bấm sai kết quả . Kết quả đúng là :
\(A=\frac{2^{10}-1}{2^{10}}\)
Tính :
\(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\)
\(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}=\frac{1}{1024}\)dùng phương pháp loại trừ
tính
-1 - \(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\)
Đặt \(A=-1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\)
Ta có:
\(A=\left(-1\right)-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\)
\(\left(-1\right)-A=\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\)
\(2\left[\left(-1\right)-A\right]=1-\frac{1}{2}-\frac{1}{4}-...-\frac{1}{512}\)
\(2\left[\left(-1\right)-A\right]-\left[-1-A\right]=\left(1-\frac{1}{2}-\frac{1}{4}-...-\frac{1}{512}\right)-\left(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\right)\)
\(\left[\left(-1\right)-A\right]=1-\frac{1}{1024}=\frac{1023}{1024}\)
\(A=\left(-1\right)-\frac{1023}{1024}\)
\(=\frac{-2047}{1024}\)
Ai mún nhờ mk giải violympic vòng 1 300 đ ko
10 nghìn 1 lần nhé hoặc là xóa nick facebook (20 nghìn 1 lần)
Hoặc Hack facebook (10 nghìn 1 lên 500 )
mình chỉ xóa facebook khi facebook sử dụng email và có mk
Tính: \(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\). Cần gấp!
Đặt :
\(A=1+\frac{1}{2}+\frac{1}{4}+..........+\frac{1}{1024}\)
\(\Leftrightarrow A=1+\frac{1}{2}+\frac{1}{2^2}+..........+\frac{1}{2^{10}}\)
\(\Leftrightarrow2A=2+1+\frac{1}{2}+......+\frac{1}{2^9}\)
\(\Leftrightarrow2A-A=\left(2+1+\frac{1}{2}+....+\frac{1}{2^9}\right)-\left(1+\frac{1}{2}+....+\frac{1}{2^{10}}\right)\)
\(\Leftrightarrow A=2-\frac{1}{2^{10}}\)
Gọi dãy số trên là A
\(A=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\)
\(2A=2+1+\frac{1}{2}+...+\frac{1}{512}\)
\(2A-A=\left(2+1+\frac{1}{2}+...+\frac{1}{512}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}+\frac{1}{1024}\right)\)
\(A=2-\frac{1}{1024}\)
\(A=\frac{2048}{1024}-\frac{1}{1024}\)
\(A=\frac{2047}{1024}\)