Những câu hỏi liên quan
C9
Xem chi tiết
NT
23 tháng 9 2021 lúc 21:25

Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

nên BC=15(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=7,2\left(cm\right)\\BH=5.4\left(cm\right)\\CH=9.6\left(cm\right)\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
EY
Xem chi tiết
NM
2 tháng 11 2021 lúc 11:22

a, \(\cos B=\cos60^0=\dfrac{AC}{BC}=\dfrac{1}{2}\Leftrightarrow AC=10\left(cm\right)\)

\(AB=\sqrt{BC^2-AC^2}=10\sqrt{3}\left(cm\right)\left(pytago\right)\)

\(b,\) Sửa: Tính AH,BH,CH 

Áp dụng HTL: \(\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=15\left(cm\right)\\CH=\dfrac{AC^2}{BC}=5\left(cm\right)\end{matrix}\right.\)\(AH=\dfrac{AB\cdot AC}{BC}=5\sqrt{3}\left(cm\right)\)

 

 

Bình luận (2)
H24
Xem chi tiết
KC
16 tháng 9 2021 lúc 19:33

AH =16cm (pitago)

BC=\(\dfrac{625}{9}\)cm (định lí 1)

HC=BC-HB=625/9-9=544/9 cm

AC=340000/81

Bình luận (0)
H24
Xem chi tiết
NT
25 tháng 8 2021 lúc 0:41

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=9^2+12^2=225\)

hay BC=15cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=5,4cm\\CH=9,6cm\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
NT
3 tháng 8 2023 lúc 23:36

góc A=180-50-60=70 độ

Xét ΔABC có BC/sinA=AB/sinC=AC/sin B

=>BC/sin70=12/sin60=AC/sin50

=>\(BC\simeq13,02;AC\simeq10,61\)

\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sinBAC=\dfrac{1}{2}\cdot12\cdot10.61\cdot sin70\simeq59,82\)

\(AH=2\cdot\dfrac{59.82}{10.61}\simeq11,28\)

\(HB=\sqrt{AB^2-AH^2}=\sqrt{12^2-11.28^2}\simeq4,09\)

HC=10,61-4,09=6,52

Bình luận (0)
H24
3 tháng 8 2023 lúc 23:12

giúp mik vs

Bình luận (0)
NT
Xem chi tiết
AQ
Xem chi tiết
LL
8 tháng 10 2021 lúc 23:15

a) Xét tam giác ABC có:

\(\left\{{}\begin{matrix}AB^2+AC^2=9^2+12^2=225\\BC^2=15^2=225\end{matrix}\right.\)

\(\Rightarrow AB^2+AC^2=BC^2\)

=> Tam giác ABC vuông tại A(Pytago đảo)

b) Áp dụng tslg trong tam giác ABC vuông tại A:

\(\left\{{}\begin{matrix}sinC=\dfrac{AB}{BC}=\dfrac{9}{15}=\dfrac{3}{5}\\sinB=\dfrac{AC}{BC}=\dfrac{12}{15}=\dfrac{4}{5}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\widehat{C}\approx37^0\\\widehat{B}\approx53^0\end{matrix}\right.\)

c) Áp dụng HTL:

\(AH.BC=AB.AC\)

\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{9.12}{15}=7,2\left(cm\right)\)

\(\left\{{}\begin{matrix}AB^2=BH.BC\\AC^2=CH.BC\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=\dfrac{9^2}{15}=5,4\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{12^2}{15}=9,6\left(cm\right)\end{matrix}\right.\)

Bình luận (0)
HT
8 tháng 10 2021 lúc 23:14

Xét tam giác ABC vuông tại A có Ah đường cao

\(\Rightarrow AH.BC=AB.AC\)

\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{9.12}{15}=7,2\left(cm\right)\)

\(\Rightarrow AB^2=BH.BC\)

\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{9^2}{15}=5,4\left(cm\right)\)

\(\Rightarrow HC=BC-BH=15-5,4=9,6\left(cm\right)\)

Bình luận (0)
HT
8 tháng 10 2021 lúc 23:07

a) taco BC=15\(\Rightarrow BC^2=225\)

\(AB=9\rightarrow AB^2=81\)

\(AC=12\Rightarrow AC^2=144\)

\(\Rightarrow AB^2+AC^2=81+144=225\)

\(\Rightarrow AB^2+AC^2=BC^2\)

\(\Rightarrow\Delta ABCvuôngtạiA\)

Bình luận (0)
TK
Xem chi tiết