Những câu hỏi liên quan
VM
Xem chi tiết
AN
14 tháng 2 2017 lúc 8:52

\(\hept{\begin{cases}\frac{25x^2-y^2}{20x-4y-3\left(5x+y\right)}=3\\\frac{25x^2-y^2}{2\left(5x-y\right)+10x+2y}=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{\left(5x-y\right)\left(5x+y\right)}{4\left(5x-y\right)-3\left(5x+y\right)}=3\\\frac{\left(5x-y\right)\left(5x+y\right)}{2\left(5x-y\right)+2\left(5x+y\right)}=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{4\left(5x-y\right)-3\left(5x+y\right)}{\left(5x-y\right)\left(5x+y\right)}=\frac{1}{3}\\\frac{2\left(5x-y\right)+2\left(5x+y\right)}{\left(5x-y\right)\left(5x+y\right)}=1\end{cases}}\)

 \(\Leftrightarrow\hept{\begin{cases}\frac{4}{5x+y}-\frac{3}{5x-y}=\frac{1}{3}\\\frac{2}{5x+y}+\frac{2}{5x-y}=1\end{cases}}\) 

Đặt: \(\hept{\begin{cases}\frac{1}{5x+y}=a\\\frac{1}{5x-y}=b\end{cases}}\)thì hệ thành

\(\hept{\begin{cases}4a-3b=\frac{1}{3}\\2a+2b=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=\frac{11}{42}\\b=\frac{5}{21}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{5x+y}=\frac{11}{42}\\\frac{1}{5x-y}=\frac{5}{21}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{441}{550}\\y=-\frac{21}{110}\end{cases}}\)

PS: Bí thì bỏ chứ đăng lên làm gì :3

Bình luận (0)
VM
14 tháng 2 2017 lúc 12:51

Em không thích bỏ đó được không? :3

Bình luận (0)
NP
Xem chi tiết
MM
7 tháng 11 2018 lúc 19:45

Lời giải

Đặt √x+2018=a(a≥0)⇒2018=a2−xx+2018=a(a≥0)⇒2018=a2−x

PT đã cho trở thành:

x2+a=a2−xx2+a=a2−x

⇔(x2−a2)+(a+x)=0⇔(x2−a2)+(a+x)=0

⇔(x+a)(x−a+1)=0⇔(x+a)(x−a+1)=0

⇒[x+a=0x−a+1=0⇒[x+a=0x−a+1=0

Nếu x+a=0⇒a=−x⇔√x+2018=−xx+a=0⇒a=−x⇔x+2018=−x

⇒{x≤0x+2018=x2⇒{x≤0x+2018=x2

⇒{x≤0x=1±3√8972⇒{x≤0x=1±38972 (giải pt bậc 2 cơ bản)

⇒x=1−3√8972⇒x=1−38972

Nếu x−a+1=0⇒a=x+1⇒√x+2018=x+1x−a+1=0⇒a=x+1⇒x+2018=x+1

⇒{x+2018=(x+1)2x≥−1⇒{x2+x−2017=0x≥−1⇒{x+2018=(x+1)2x≥−1⇒{x2+x−2017=0x≥−1

⇒x=√8069−12

Đặt √x+2018=a(a≥0)⇒2018=a2−xx+2018=a(a≥0)⇒2018=a2−x

PT đã cho trở thành:

x2+a=a2−xx2+a=a2−x

⇔(x2−a2)+(a+x)=0⇔(x2−a2)+(a+x)=0

⇔(x+a)(x−a+1)=0⇔(x+a)(x−a+1)=0

⇒[x+a=0x−a+1=0⇒[x+a=0x−a+1=0

Nếu x+a=0⇒a=−x⇔√x+2018=−xx+a=0⇒a=−x⇔x+2018=−x

⇒{x≤0x+2018=x2⇒{x≤0x+2018=x2

⇒{x≤0x=1±3√8972⇒{x≤0x=1±38972 (giải pt bậc 2 cơ bản)

⇒x=1−3√8972⇒x=1−38972

Nếu x−a+1=0⇒a=x+1⇒√x+2018=x+1x−a+1=0⇒a=x+1⇒x+2018=x+1

⇒{x+2018=(x+1)2x≥−1⇒{x2+x−2017=0x≥−1⇒{x+2018=(x+1)2x≥−1⇒{x2+x−2017=0x≥−1

⇒x=√8069−12

Bình luận (0)
MM
7 tháng 11 2018 lúc 19:46

Nhầm tí 1 dòng thôi

Bình luận (0)
TP
Xem chi tiết
NT
Xem chi tiết
HN
Xem chi tiết
H24
23 tháng 2 2021 lúc 17:53

Mình khuyên bạn thế này : 

Bạn nên tách những câu hỏi ra 

Như vậy các bạn sẽ dễ giúp

Và cũng có nhiều bạn giúp hơn !

Bình luận (0)
 Khách vãng lai đã xóa
LD
23 tháng 2 2021 lúc 19:49

Bài 1.

a) ( x - 3 )( x + 7 ) = 0

<=> x - 3 = 0 hoặc x + 7 = 0

<=> x = 3 hoặc x = -7

Vậy S = { 3 ; -7 }

b) ( x - 2 )2 + ( x - 2 )( x - 3 ) = 0

<=> ( x - 2 )( x - 2 + x - 3 ) = 0

<=> ( x - 2 )( 2x - 5 ) = 0

<=> x - 2 = 0 hoặc 2x - 5 = 0

<=> x = 2 hoặc x = 5/2

Vậy S = { 2 ; 5/2 }

c) x2 - 5x + 6 = 0

<=> x2 - 2x - 3x + 6 = 0

<=> x( x - 2 ) - 3( x - 2 ) = 0

<=> ( x - 2 )( x - 3 ) = 0

<=> x - 2 = 0 hoặc x - 3 = 0

<=> x = 2 hoặc x = 3

Bình luận (0)
 Khách vãng lai đã xóa
LD
23 tháng 2 2021 lúc 19:52

Bài 2.

a) \(\frac{x}{x+1}-1=\frac{3}{2}x\)

ĐKXĐ : x khác -1

<=> \(\frac{x}{x+1}-\frac{x+1}{x+1}=\frac{3}{2}x\)

<=> \(\frac{-1}{x+1}=\frac{3x}{2}\)

=> 3x( x + 1 ) = -2

<=> 3x2 + 3x + 2 = 0

Vi 3x2 + 3x + 2 = 3( x2 + x + 1/4 ) + 5/4 = 3( x + 1/2 )2 + 5/4 ≥ 5/4 > 0 ∀ x

=> phương trình vô nghiệm

b) \(\frac{4x}{x-2}-\frac{7}{x}=4\)

ĐKXĐ : x khác 0 ; x khác 2

<=> \(\frac{4x^2}{x\left(x-2\right)}-\frac{7x-14}{x\left(x-2\right)}=\frac{4x^2-8x}{x\left(x-2\right)}\)

=> 4x2 - 7x + 14 = 4x2 - 8x

<=> 4x2 - 7x - 4x2 + 8x = -14

<=> x = -14 ( tm )

Vậy phương trình có nghiệm x = -14

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
25 tháng 9 2019 lúc 6:16

Tìm được x = 7 3  hoặc x = -4

Bình luận (0)
HS
Xem chi tiết
MQ
6 tháng 4 2020 lúc 16:38

8,

b, (-x2+12x+4)/(x2+3x-4) = 12/(x+4) + 12/(3x-3)

(=) (-x2+12x+4)/(x-1)(x+4) -12(x-1)/(x-1)(x+4) - 4(x+4)/(x-1)(x+4) = 0

(=) -x2 +12x +4 -12x +12 -4x -16 = 0

(=) -x2 -4x = 0

(=) -x(x+4) = 0

(=) -x = 0 hoặc x +4 = 0

(=) x=0 hoặc x=-4

Vậy S={0;4}

Chúc bạn học tốt.

Bình luận (0)
 Khách vãng lai đã xóa
KT
Xem chi tiết
LH
26 tháng 5 2021 lúc 20:26

Đk: \(x\ne\dfrac{3}{5};x\ne\dfrac{1}{5}\)

Pt \(\Leftrightarrow\dfrac{4}{\left(5x-3\right)\left(1-5x\right)}=\dfrac{-3\left(5x-3\right)}{\left(1-5x\right)\left(5x-3\right)}-\dfrac{2x\left(1-5x\right)}{\left(1-5x\right)\left(5x-3\right)}\)

\(\Rightarrow4=-3\left(5x-3\right)-2x\left(1-5x\right)\)

\(\Leftrightarrow-10x^2+17x-5=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{17+\sqrt{89}}{20}\left(tmpt\right)\\x=\dfrac{17-\sqrt{89}}{20}\left(ktmpt\right)\end{matrix}\right.\)

Vậy...

Bình luận (1)
KD
Xem chi tiết
NT
24 tháng 10 2021 lúc 20:40

d: ta có: \(x^2-4x+4=9\left(x-2\right)\)

\(\Leftrightarrow\left(x-2\right)\left(x-11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=11\end{matrix}\right.\)

Bình luận (0)