Tìm x biết :
|x+1|+|x+4|=3x
1,Tìm x, biết:
/x+2=/2-3x/
1,Tìm x, biết:/3x+4=/x-1/
1.
| x + 2 | = | 2 - 3x |
xét 2 trường hợp :
+) TH1 :
2 - 3x = x + 2
-3x + x = 2 + 2
2x = 4
x = 4 : 2 = 2
+) TH2 :
2 - 3x = - ( x + 2 )
2 - 3x = -x - 2
-3x - x = 2 - 2
-4x = 0
x = 0 : ( -4 )
x = 0
bài còn lại tương tự
Tìm x, biết:
|x + 1| + |x + 4| = 3x.
Với |x + 1| ≥ 0, |x + 4| ≥ 0 với mọi x nên |x + 1| + |x + 4|
Suy ra: 3x ≥ 0 hay x ≥ 0.
Với x ≥ 0 ta có: x+ 1 > 0 và x + 4 > 0 nên |x + 1| = x + 1 và |x + 4| = x + 4
Ta có: x + 1 + x + 4 = 3x
2x + 5 = 3x
5 = 3x – 2x
5 = x hay x= 5
Vậy x = 5.
Tìm x, biết:
|x − 1| + |x − 4| = 3x.
* Xét x < 1 thì x - 1 < 0 và x – 4 < 0 nên:
|x - 1| = 1 - x; |x - 4| = 4 - x
Ta có: 1 - x + 4 - x = 3x
1 + 4 = 3x + x+ x
5 = 5x
5x = 5
x = 1 (không thỏa mãn điều kiện x< 1).
* Xét 1 ≤ x < 4 thì x – 1 ≥ 0 và x – 4 < 0 nên:
|x - 1| = x - 1; |x - 4| = 4 - x
Ta có: x – 1 + 4 – x = 3x
3 = 3x
3x = 3
x = 3: 3
x = 1( thỏa mãn điều kiện)
* Nếu x ≥ 4 thì x – 1 > 0 và x – 4 ≥ 0 nên:
|x - 1| = x - 1; |x - 4| = x - 4
Ta có: x - 1 + x - 4 = 3x
2x – 5 = 3x
- 5 = 3x – 2x
- 5 = x
x = - 5 ( không thỏa mãn điều kiện)
Vậy x = 1
tìm x biết (x-1)3+3x(x-4)+1=0
\(\left(x-1\right).3+3x\left(x-4\right)+1=0\)
\(\Rightarrow3x-3+3x^2-12x+1=0\)
\(\Rightarrow3x^2-9x-2=0\)
\(\Rightarrow3\left(x^2-\frac{2.3}{2}.x+\frac{9}{4}\right)-\frac{35}{4}=0\)
\(\Rightarrow3\left(x-\frac{3}{2}\right)^2=\frac{35}{4}\Rightarrow\left(x-\frac{3}{2}\right)^2=\frac{35}{12}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{3}{2}=\sqrt{\frac{35}{12}}\\x-\frac{3}{2}=-\sqrt{\frac{35}{12}}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=\sqrt{\frac{35}{12}}+\frac{3}{2}\\x=\frac{3}{2}-\sqrt{\frac{35}{12}}\end{cases}}\)
Vậy.....................
1,TÌM SỐ NGUYÊN X BIẾT
H, 3X +12= 2X-4
I, 14 -3X= -X+4
K,2(X-2)+7= X-25
tìm x biết: (x-5)3=(1-3x)2
Bài này không phù hợp với lớp 6 bạn à.
Tìm x biết
a, |3x+1|>4
Tìm x biết:
/x+1/+/x+2/=3x
|x + 1| + |x + 2| = 3x
Có |x + 1| \(\ge\)0 với mọi x
|x + 2| \(\ge\)0 với mọi x
=> |x + 1| + |x + 2| \(\ge\)0 với mọi x
<=> 3x \(\ge\)0
Mà 3 > 0
=> x \(\ge\)0
<=> x + 1 > 0 và x + 2 > 0
<=> |x + 1| = x + 1 và |x + 2| = x + 2
=> x + 1 + x + 2 = 3x
<=> 2x + 3 = 3x
<=> x = 3
tìm x biết : 2.(x-3)-(3x-5)=(x+20-(x-1)
2(x - 3) - (3x - 5) = x + 20 - (x - 1)
=> 2x - 6 - 3x + 5 = x + 20 - x + 1
=> -x - 1 = 21
=> -x = 21 + 1
=> -x = 22
=> x= 22