Những câu hỏi liên quan
SK
Xem chi tiết
SZ
28 tháng 8 2016 lúc 14:49

Áp dụng công thức tính dãy số : [( số cuối - số đầu ) : khoảng cách + 1] x ( số cuối + số đầu) : 2

Ta có :

a) 1 + 2 + 3 + 4 + ..... + n = [ ( n - 1) : 1 + 1 ] x ( n + 1) : 2 = n x ( n + 1) : 2

Bình luận (0)
SK
28 tháng 8 2016 lúc 14:47

có ai ko giúp mik vs

Bình luận (0)
GC
28 tháng 8 2016 lúc 14:53

b) Từ 1 đến ( 2n - 1 ) có số số hạng là :  ( 2n + 1 - 1 ) : 2 + 1 =  2n : 2 +1 = n + 1 ( số hạng ) 

=> 1 + 3 + 5 + 7 + ... + ( 2n + 1 ) 

= (n+1).(2n+1+1) : 2 

= (n + 1) . (2n+2) : 2 

= (n+1).(n+1).2:2

=n+1).(n+1) 

= ( n + 1 )\(^2\)

Bình luận (0)
LT
Xem chi tiết
H9
15 tháng 8 2023 lúc 11:24

a) \(1+2+3+4+...+n\)

\(=\left(n+1\right)\left[\left(n-1\right):1+1\right]:2\)

\(=\left(n+1\right)\left(n-1+1\right):2\)

\(=n\left(n+1\right):2\)

\(=\dfrac{n\left(n+1\right)}{2}\)

b) \(2+4+6+..+2n\)

\(=\left(2n+2\right)\left[\left(2n-2\right):2+1\right]:2\)

\(=2\left(n+1\right)\left[2\left(n-1\right):2+1\right]:2\)

\(=\left(n+1\right)\left(n-1+1\right)\)

\(=n\left(n+1\right)\)

c) \(1+3+5+...+\left(2n+1\right)\)

\(=\left[\left(2n+1\right)+1\right]\left\{\left[\left(2n-1\right)-1\right]:2+1\right\}:2\)

\(=\left(2n+1+1\right)\left[\left(2n-1-1\right):2+1\right]:2\)

\(=\left(2n+2\right)\left[\left(2n-2\right):2+1\right]:2\)

\(=2\left(n+1\right)\left[2\left(n-1\right):2+1\right]:2\)

\(=\left(n+1\right)\left(n-1+1\right)\)

\(=n\left(n+1\right)\)

Bình luận (0)
H9
15 tháng 8 2023 lúc 11:28

d) \(1+4+7+10+...+2005\)

\(=\left(2005+1\right)\left[\left(2005-1\right):3+1\right]:2\)

\(=2006\cdot\left(2004:3+1\right):2\)

\(=2006\cdot\left(668+1\right):2\)

\(=1003\cdot669\)

\(=671007\)

e) \(2+5+8+...+2006\)

\(=\left(2006+2\right)\left[\left(2006-2\right):3+1\right]:2\)

\(=2008\cdot\left(2004:3+1\right):2\)

\(=1004\cdot\left(668+1\right)\)

\(=1004\cdot669\)

\(=671676\)

g) \(1+5+9+...+2001\)

\(=\left(2001+1\right)\left[\left(2001-1\right):4+1\right]:2\)

\(=2002\cdot\left(2000:4+1\right):2\)

\(=1001\cdot\left(500+1\right)\)

\(=1001\cdot501\)

\(=501501\)

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
TS
11 tháng 3 2022 lúc 15:02

a) = 1/2 - 1/2 + 1/3 -1/3 + 1/4 - 1/4 + 1/5 - 1/5 + 1/6

    =  0 + 0 + 0 + 0 + 1/6

    = 1/6

b) 2/3 + 2/4 - 2/4 + 2/5 - 2/5 + 2/6 - 2/6 + 2/7 - 2/7 + 28

=  2/3 + 28

=     86/3

[tick cho mik nha]

Bình luận (0)
PP
Xem chi tiết
PT
4 tháng 7 2023 lúc 15:00

a) A = 1 + 2 + 3 + 4+... + 50;

Tổng A có 50 số hạng nên A = (1 + 50).50:2 = 1275,

b) B = 2 + 4 + 6 + 8 + ...+100;

Số số hạng của tổng B là: (100 - 2): 2+1 = 50 (số)

Do đó B = (2 +100).50 : 2 = 2550.

c) C = 1 + 3 + 5 + 7 +... + 99;

Số số hạng của tổng C là: (99 - 1): 2 +1 = 50 (số)

Do đó C = (1 + 99). 50 : 2 = 2500.

Bình luận (0)
PT
4 tháng 7 2023 lúc 15:07

 

d = 2 + 5 + 8 + 11 .... 98 

= ( 92 - 2 ) : 3 + 1 = 33 

= 33 . ( 98 + 2 ) : 2 

 = 1650

tick cho tớ với

Bình luận (0)
PT
4 tháng 7 2023 lúc 15:07

Số phần tử của D là: (98-2):3+1=33

Suy ra D = 33.(98+2):2=1650

Bình luận (0)
LD
Xem chi tiết
NA
Xem chi tiết
KT
3 tháng 7 2016 lúc 11:00

a) =\(\frac{n\left(n+1\right)}{2}\)

b) =\(n\left(n+1\right)\)

c) =\(\left(n+1\right)^2\)

d) =\(\left(2008+1\right).\left(\frac{2008-1}{3}+1\right):2=673015\)

Bình luận (0)
LL
Xem chi tiết
NH
Xem chi tiết
NH
3 tháng 7 2015 lúc 21:20

ta tính các tổng theo công thức:

tổng có số các số hạng là: (số đầu - số cuối) : khoảng cách +1

giá trị của tổng: (số đầu+ cuối). số số hạng :2

áp dụng tính

a) số số hạng: (n-1):1+1=n-1

giá trị: \(\left(n+1\right)\left(n-1\right):2=\frac{\left(n^2-1\right)}{2}\)

b)  \(=\left(2n-1+1\right).\left(\frac{2n-1-1}{2}+1\right):2=2n\frac{2n}{2}:2=n^2\)

c) \(=\left(2n+2\right)\left(\frac{2n-2}{2}+1\right)=2\left(n+1\right)2n:2=2n\left(n+1\right)\)

Bình luận (0)
HC
5 tháng 10 2016 lúc 21:15

đúng rồi đó bn nhưng cách kafm giống lớp 8 quá

Bình luận (0)
LH
10 tháng 12 2016 lúc 16:07

giong lop8 wa 

Bình luận (0)