Những câu hỏi liên quan
KS
Xem chi tiết
NM
8 tháng 5 2018 lúc 15:17

\(A=\left(x-1\right)\left(2x-1\right)\left(2x^2-3x-1\right)+2017\)

\(=\left(2x^2-3x+1\right)\left(2x^2-3x-1\right)+2017\)

\(=\left(2x^2-3x\right)^2-1+2017\)

\(=\left(2x^2-3x\right)^2+2016\ge2016\)

\(\Leftrightarrow2x^2-3x=0\Leftrightarrow x\left(2x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)

Vậy \(A_{min}=2016\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)

Bình luận (0)
NM
8 tháng 5 2018 lúc 15:21

ai thấy mình làm đúng thì k cho mình nha!

Bình luận (0)
NH
8 tháng 5 2018 lúc 15:21

A=\(\left(2x^2-3x+1\right)\left(2x^2-3x-1\right)+2017\)

ĐẶT \(2x^2-3x=t\)

\(\Leftrightarrow\left(t+1\right)\left(t-1\right)+2017\)

\(\Leftrightarrow t^2-1+2017\)

\(\Leftrightarrow t^2+2016\ge2016\left(do.t^2\ge0\right)\)

DẤU ''='' XẢY RA KHI VÀ CHỈ KHI \(t^2=0\Leftrightarrow2x^2-3x=0\Leftrightarrow x\left(2x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=0\end{cases}}\)

VẬY GTNN CỦA A LÀ 2016 TẠI X=0 HOẶC X=3/2

Bình luận (0)
NV
Xem chi tiết
VT
25 tháng 7 2016 lúc 9:27

Bài 1 : \(A=\frac{2016}{x^2-2x+2017}\) đạt GTLN khi \(x^2-2x+2017\) đạt GTNN .

\(x^2-2x+2017=x^2-2x+1+2016=\left(x-1\right)^2+2016\Rightarrow GTNN\) của \(x^2-2x+2017\) là \(2016\)

\(\Rightarrow GTLN\) của \(A\) là : \(\frac{2016}{2016}=1\)

Bình luận (0)
VT
25 tháng 7 2016 lúc 9:33

Bài 2 :

a ) Đặt \(A=\frac{2}{6x-9x^2-21}.A\) đạt \(GTNN\) Khi \(\frac{1}{A}\) đạt \(GTLN\).

Ta có : \(\frac{1}{A}=\frac{-9x^2+6x-21}{20}=-\frac{9}{20}\left(x-\frac{1}{3}\right)^2-1\le-1\)

Vậy \(Max\left(\frac{1}{A}\right)=-1\Leftrightarrow x=\frac{1}{3}\)

\(\Rightarrow Min_A=-1\Rightarrow x=\frac{1}{3}\)

b ) Đặt \(B=\left(x-1\right)\left(x-2\right)\left(x-5\right)\left(x-6\right)\)

Ta có : \(B=\left[\left(x-1\right)\left(x-6\right)\right].\left[\left(x-2\right)\left(x-5\right)\right]=\left(x^2-7x+6\right)\left(x^2-7x+10\right)\)

Đặt \(y=x^2-7x+8\Rightarrow B=\left(y+2\right)\left(y-2\right)=y^2-4\ge-4\)

\(Min_B=-4\) khi và chỉ khi \(x^2-7x+8=0\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{7+\sqrt{17}}{2}\\x=\frac{7-\sqrt{17}}{2}\end{array}\right.\)

 

Bình luận (0)
L1
Xem chi tiết
H24
28 tháng 2 2019 lúc 22:31

\(\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|\)

\(=\left|x-2015\right|+\left|2017-x\right|+\left|x-2016\right|\)

\(\ge\left|x-2015+2017-x\right|+\left|x-2016\right|\)

\(=2+\left|x-2016\right|\ge2\)

Dấu "=" khi \(\hept{\begin{cases}x-2016=0\\\left(x-2015\right)\left(2017-x\right)\ge0\end{cases}}\Leftrightarrow x=2016\)

Bình luận (0)
YN
Xem chi tiết
H24
6 tháng 11 2018 lúc 20:24

\(A=\left|x-2016\right|+\left|x-2017\right|+\left|x-2015\right|\)

\(A= \left|x-2016\right|+\left|2017-x\right|+\left|x-2015\right|\)

\(A\ge\left|x-2016\right|+\left|2017-x+x-2015\right|\)

\(A\ge\left|x-2016\right|+2\ge2\)

\("="\Leftrightarrow\hept{\begin{cases}x=2016\\2015\le x\le2017\end{cases}}\Leftrightarrow x=2016\)

Bình luận (0)
H24
Xem chi tiết
H24
24 tháng 1 2017 lúc 16:27

Đặt bẫy hả

Bình luận (0)
ZZ
Xem chi tiết
PT
Xem chi tiết
LC
Xem chi tiết
LC
2 tháng 12 2019 lúc 11:38

Nhanh lên nhé mình xin các bạn đấy

Bình luận (0)
 Khách vãng lai đã xóa
NV
Xem chi tiết