Những câu hỏi liên quan
HP
Xem chi tiết
ML
9 tháng 8 2015 lúc 21:53

\(\left|a\right|+\left|b\right|\ge\left|a+b\right|\Leftrightarrow\left(\left|a\right|+\left|b\right|\right)^2\ge\left(\left|a+b\right|\right)^2\)

\(\Leftrightarrow a^2+b^2+2\left|ab\right|\ge a^2+b^2+2ab\)

\(\Leftrightarrow\left|ab\right|\ge ab\)

Do bất đẳng thức cuối đúng nên bất đẳng thức ban đầu đúng (cũng có thể viết ngược từ dưới lên trên để chứng minh)

Dấu "=" xảy ra khi \(\left|ab\right|=ab\Leftrightarrow ab\ge0\)

Bình luận (0)
TL
9 tháng 8 2015 lúc 21:54

Bình phương hai vế của bất đẳng thức ta được: (a+b)2 \(\le\) (|a| + |b|)2

=> a2 + 2ab + b\(\le\) a2 + b2 + 2|ab| => ab \(\le\) |ab| . Điều này luôn đúng nên |a + b| \(\le\) |a| + |b| đúng

Dấu "=" xảy ra khi ab = |ab| <=> a.b \(\ge\) 0 

Bình luận (0)
H24
8 tháng 6 2018 lúc 10:27

bài làm

Bình phương hai vế của bất đẳng thức ta được: (a+b)2  (|a| + |b|)2

=> a2 + 2ab + b a2 + b2 + 2|ab|

=> ab  |ab| .

Dấu "=" xảy ra khi ab = |ab| <=> a.b  0 

hok tốt

Bình luận (0)
PB
Xem chi tiết
CT
9 tháng 3 2017 lúc 8:18

Vì a ≥ 0 nên √a xác định, b  ≥  0 nên  b  xác định

Ta có:  a - b 2 ≥  0 ⇔ a - 2 a b  + b  ≥  0

⇒ a + b  ≥  2 a b  ⇔  a + b 2 ≥ a b

Dấu đẳng thức xảy ra khi a = b.

Bình luận (0)
DV
Xem chi tiết
MT
18 tháng 7 2015 lúc 20:15

áp dụng BĐT cô-si ta có:

\(\frac{a+b}{2}=\frac{a}{2}+\frac{b}{2}\)\(\ge2\sqrt{\frac{a}{2}.\frac{b}{2}}=2\frac{\sqrt{a}\sqrt{b}}{\sqrt{4}}=2\frac{\sqrt{ab}}{2}=\sqrt{ab}\)

Vậy \(\frac{a+b}{2}\ge\sqrt{ab}\)

Dấu đẳng thức xảy ra khi a=b=0 hoặc a=b=1

 

Bình luận (0)
MT
18 tháng 7 2015 lúc 20:15

cái câu hỏi 2 tớ ko bik đúng ko 

Bình luận (0)
ML
18 tháng 7 2015 lúc 20:25

Đề yêu cầu chứng minh bất đẳng thức Côsi chứ không phải áp dụng nó!

Biến đổi tương đương bình thường thôi:

\(\frac{a+b}{2}\ge\sqrt{ab}\Leftrightarrow a+b\ge2\sqrt{ab}\Leftrightarrow a-2\sqrt{ab}+b\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)

Do bất đẳng thức cuối cùng đúng nên bất đẳng thức ban đầu đúng. Một cách trình bày khác là ghi ngược từ cuối lên đầu!

Dấu "=" xảy ra khi \(\sqrt{a}-\sqrt{b}=0\Leftrightarrow a=b\)

Bình luận (0)
H24
Xem chi tiết
H24
31 tháng 12 2017 lúc 8:14

Ta co \(\left(a-b\right)^2\ge0\)\(\forall_{a,b}\in R\)

=> \(a^2-2ab+b^2\ge0\)

=>\(a^2+2ab+b^2\ge4ab\)

=>\(\left(a+b\right)^2\ge4ab\)

=>\(\left(\frac{a+b}{2}\right)^2\ge ab\)

Bình luận (0)
H24
31 tháng 12 2017 lúc 8:14

dau bang xay khi khi a=b

Bình luận (0)
LN
Xem chi tiết
DH
Xem chi tiết
SK
Xem chi tiết
DM
23 tháng 4 2017 lúc 18:54

Nếu n= 2, tức có hai giá trị x1x2, và từ giả thiết ở trên, ta có:

điều phải chứng minh - ở đây \(x_1=a;x_2=b\)

Bình luận (0)
NV
28 tháng 5 2017 lúc 16:08

\(\dfrac{a+b}{2}\ge\sqrt{ab}\)

\(\Leftrightarrow a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\)

-Dấu đẳng thức trên xảy ra khi: Trung bình cộng lớn hơn hoặc bằng trung bình nhân

Bình luận (0)
NO
Xem chi tiết
HN
16 tháng 8 2016 lúc 18:19

Chứng minh bằng biến đổi tương đương : 

\(\frac{a+b}{2}\ge\sqrt{ab}\) \(\Leftrightarrow a+b\ge2\sqrt{ab}\Leftrightarrow a+b-2\sqrt{ab}\ge0\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge\) (luôn đúng)

Bđt cuối luôn đúng nên bđt ban đầu được chứng minh.

Dấu "=" xảy ra khi \(\sqrt{a}-\sqrt{b}=0\Leftrightarrow a=b\) (a,b không âm)

Bình luận (0)
DH
Xem chi tiết
NT
19 tháng 12 2021 lúc 20:45

a: \(\Leftrightarrow a^2-4a+4+b^2-6b+9+c^2-2c+1>=0\)

\(\Leftrightarrow\left(a-2\right)^2+\left(b-3\right)^2+\left(c-1\right)^2>=0\)

Dấu '=' xảy ra (a,b,c)=(2;3;1)

Bình luận (1)