Những câu hỏi liên quan
DT
Xem chi tiết
PN
Xem chi tiết
TH
22 tháng 4 2022 lúc 15:32

ké ý (b) ạ!!!

Bình luận (0)
PN
Xem chi tiết
AT
Xem chi tiết
HD
Xem chi tiết
H24
14 tháng 5 2021 lúc 21:04

a )

`VP= (a+b)^3-3ab(a+b)`

     `=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2`

     `=a^3+b^3 =VT (đpcm)`

b) 

b) Ta có

`VT=a3+b3+c3−3abc`

     `=(a+b)3−3ab(a+b)+c3−3abc`

     `=[(a+b)3+c3]−3ab(a+b+c)`

     `=(a+b+c)[(a+b)2+c2−c(a+b)]−3ab(a+b+c)`

     `=(a+b+c)(a2+b2+2ab+c2−ac−bc−3ab)`

    `=(a+b+c)(a2+b2+c2−ab−bc−ca)=VP`

  
Bình luận (0)
H24
14 tháng 5 2021 lúc 21:09

 

a) Ta có:

`VP= (a+b)^3-3ab(a+b)`

     `=a^3 + b^3+3ab ( a + b )- 3ab ( a + b )`

     `=a^3 + b^3=VT(dpcm)`

b) Ta có

`VT=a^3+b^3+c^3−3abc`

     `=(a+b)^3−3ab(a+b)+c^3−3abc`

     `=[(a+b)^3+c^3]−3ab(a+b+c)`

     `=(a+b+c)[(a+b)^2+c^2−c(a+b)]−3ab(a+b+c)`

     `=(a+b+c)(a^2+b^2+2ab+c^2−ac−bc−3ab)`

    `=(a+b+c)(a^2+b^2+c^2−ab−bc−ca)=VP`

Bình luận (0)
PB
Xem chi tiết
CT
15 tháng 11 2019 lúc 7:59

T a   c ó :   a 3   -   b 3   +   c 3   +   3 a b c   =   ( a 3   +   c 3   +   3 a 2 c   +   3 a c 2 )   -   3 a 2 c   -   3 a c 2   +   3 a b c   -   b 3   =   ( a   +   c ) 3   -   b 3   -   3 a c ( a   +   c   -   b )   =   ( a   +   c   -   b ) [ ( a   +   c ) 2   +   b ( a   +   c )   +   b 2 ]   -   3 a c ( a   +   c   -   b )   =   ( a   +   c   -   b ) ( a 2   +   b 2   +   c 2   +   a b   +   b c   -   a c )   ( a   +   b ) 2   +   ( b   +   c ) 2   +   ( c   -   a ) 2       =   ( a 2   +   2 a b   +   b 2 )   +   ( b 2   +   2 b c   +   c 2 )   +   ( c 2   -   2 a c   +   a 2 )   =   2 a 2   +   2 b 2   +   2 c 2   +   2 a b   +   2 b c   -   2 a c   =   2   ( a 2   +   b 2   +   c 2   +   a b   +   b c   -   a c )

= >   C   = (a + c − b)(a 2 + b 2 + c 2 + ab + bc − ac) 2(a 2 + b 2 + c 2 + ab + bc − ac) = a + c − b 2

Mà a + c - b = 10 nên  C   =   a + c − b 2 = 10 2 = 5

Đáp án D

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NM
13 tháng 10 2021 lúc 15:55

\(2,\\ a,a^3+b^3=a^3=3a^2b+3ab^2+b^3-3a^2b-3ab^2\\ =\left(a+b\right)^3-3ab\left(a+b\right)\\ b,a^3+b^3+c^3-3abc\\ =\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\\ =\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\\ =\left(a+b+c\right)\left(a^2+b^2+c^2-ac-ab-bc\right)\)

Bình luận (0)
MS
13 tháng 10 2021 lúc 16:10

khó v. e ko giải đc đâu

 

Bình luận (1)