Phân tích thành nhân tử :
x³+4x²-7x-10
Phân tích đa thức thành nhân tử x3 + 4x2 - 7x - 10
Phân tích đa thức thành nhân tử
a/ x^3+4x^2-7x-10
b/ x^8+x+1
a)\(x^3+4x^2-7x-10=x^3+x^2+3x^2+3x-10x-10=x^2\left(x+1\right)+3x\left(x+1\right)-10\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+3x-10\right)=\left(x+1\right)\left[\left(x^2+5x\right)-\left(2x+10\right)\right]=\left(x+1\right)\left(x+5\right)\left(x-2\right)\)
b) \(x^8+x+1=x^8-x^2+x^2+x+1=x^2\left(x^6-1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x^2\left(x-1\right)\left(x^3+1\right)+1\right]\)
phân tích đa thức thành nhân tử:
x3 + 4x2 - 7x - 10
a)x3+4x2−7x−10=x3+x2+3x2+3x−10x−10=x2(x+1)+3x(x+1)−10(x+1)�3+4�2−7�−10=�3+�2+3�2+3�−10�−10=�2(�+1)+3�(�+1)−10(�+1)
=(x+1)(x2+3x−10)=(x+1)[(x2+5x)−(2x+10)]=(x+1)(x+5)(x−2)
Phân tích đa thức thành nhân tử a)x^2+3x-5 b)5x^2+6xy+y^2 c)x^2-7x+10 d)4x^2+12x+9-y^2
b: \(5x^2+6xy+y^2\)
\(=5x^2+5xy+xy+y^2\)
\(=5x\left(x+y\right)+y\left(x+y\right)\)
\(=\left(x+y\right)\left(5x+y\right)\)
c: \(x^2-7x+10=\left(x-2\right)\left(x-5\right)\)
d: \(4x^2+12x+9-y^2\)
\(=\left(2x+3\right)^2-y^2\)
\(=\left(2x-y+3\right)\left(2x+y+3\right)\)
Phân tích đa thức sau thành nhân tử
a) x2-4x+4-y2
b) x2-7x+10
a) x^2- 4x + 4 -y^2 = (x-2)^2 - y^2 = (x+y-2)(x-y-2)
b) x^2 - 7x + 10 = x^2 - 5x - 2x + 10 = x(x-5) - 2(x-5) = (x-2)(x-5)
1 phân tích đa thức thành nhân tử a. 7x^2-5x-2
b. x^3-7x^2-4x+10
2 tìm x biết 5.(2x-1)^2-3.(2x-1)=0
3 chứng minh x^2-4x+7>0
1. a) 7x2 - 5x - 2 = 7x2 - 7x + 2x - 2 = 7x(x - 1) + 2(x - 1) = (x - 1).(7x + 2)
2. 5(2x - 1)2 - 3(2x - 1) = 0
<=> (2x - 1).[5(2x - 1) - 3] = 0
<=> (2x - 1).(10x - 8) = 0
<=> (2x - 1) = 0 hoặc (10x - 8) = 0
<=> x = 1/2 hoặc x = 4/5
3. x2 - 4x + 7 = (x2 - 4x + 4) + 3 = (x - 2)2 + 3
Do: (x - 2)2 > hoặc = 0 (với mọi x)
Nên (x - 2)2 + 3 > hoặc = 3 (với mọi x)
Hay (x - 2)2 + 3 > 0 (với mọi x) => đpcm
\(7x^2-5x-2\)
\(=7x^2-7x+2x-2\)
\(=7x\left(x-1\right)+2\left(x-1\right)\)
\(=\left(x-1\right)\left(7x+2\right)\)
phân tích đa thức thành nhân tử
a) 3x^2-7x+10
b) X^3-4x^2y +4xy^2-y^3
b) \(x^3-4x^2y+4xy^2-y^3\)
\(=x^3-3x^2y-x^2y+3xy^2+xy^2-y^3\)
\(=\left(x^3-3x^2y+3xy^2-y^3\right)-\left(x^2y-xy^2\right)\)
\(=\left(x-y\right)^3-xy\left(x-y\right)\)
\(=\left(x-y\right)\left[\left(x-y\right)^2-xy\right]\)
\(=\left(x-y\right)\left(x^2-2xy+y^2-xy\right)\)
\(=\left(x-y\right)\left(x^2-3xy+y^2\right)\)
Phân tích đa thức thành nhân tử
a) 4x^2 +4x-3x
b) x^2+7x+10
c) x^2-x-12
d) x^2+3x-18
a) 4x2 + 4x - 3x = 4x2 +x = x( 4x+1)
b) x2+7x+10= x2+2x+5x+10= x(x+2)+5(x+2)= (x+5)(x+2)
c) x2-x-12= x2 - 4x+3x-12= x(x-4)+3(x-4)=(x+3)(x-4)
d) x2+3x-18=x2+6x-3x-18= x(x+6)-3(x+6)=(x-3)(x+6)
\(x^2+7x+10\)
\(=x^2+2x+5x+10\)
\(=x\left(x+2\right)+5\left(x+2\right)\)
\(=\left(x+2\right)\left(x+5\right)\)
Phân tích đa thức thành nhân tử:
\(5-7x^2\) (với x>0)
\(3+4x\) (với x<0)
\(5-7x^2=\left(\sqrt{5}\right)^2-\left(x\sqrt{7}\right)^2\)
\(=\left(\sqrt{5}-x\sqrt{7}\right)\left(\sqrt{5}+x\sqrt{7}\right)\)
\(3+4x=\left(\sqrt{3}\right)^2-\left(2\sqrt{x}\right)^2\) ( do x<0 )
\(=\left(\sqrt{3}-2\sqrt{x}\right)\left(3+2\sqrt{x}\right)\)