So sánh
\(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}< \frac{3}{4}\)
So sánh
\(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}vs\frac{3}{4}\)
Cho
\(S=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^{ }3}-\frac{4}{3^{ }4}+...+\frac{99}{3^{ }99}-\frac{100}{3^{ }100}\)
So sánh S và \(\frac{1}{5}\)
So sánh:
C = \(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)và D = \(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)
2 vế bằng nhau
100-(1+1/2+1/3+...+1/100) = 1/2+2/3+3/4+...+99/100
100- 1-1/2-1/3-...-1/100 = 1/2+2/3+3/4+...+99/100
100 = 1 + 1/2 + 1/2 + 1/3 + 2/3 + ... + 1/100 + 99/100 (cùng cộng 2 vế với (- 1-1/2-1/3-...-1/100)
100 = 1 + 1 + 1 + ... + 1 (100 số hạng)
100 = 100
Vậy 100-(1+1/2+1/3+...+1/100) = 1/2+2/3+3/4+...+99/100
So sánh:
P=\(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)với \(\frac{3}{4}\)
Hãy so sánh : \(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\frac{4}{5!}+....+\frac{99}{100!}\) và 1
So sánh:
\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}với\frac{1}{2}\)
So sánh P=\(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)với \(\frac{3}{4}\)
Các bạn giải nhanh giùm mình nhé ^^
Cái này dễ lắm nhưng mình ngại viết
a)Chứng minh rằng: \(\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+..+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}}=2\)
b)\(A=\frac{-21}{10^{2016}}+\frac{-12}{10^{2017}};B=\frac{-12}{10^{2016}}+\frac{-21}{10^{2017}}\)
So sánh A và B
a/ Ta có
\(200-\left(3+\frac{2}{3}+\frac{2}{4}+...+\frac{2}{100}\right)\)
\(=1+2\left(1-\frac{1}{3}\right)+2\left(1-\frac{1}{4}\right)+...+2\left(1-\frac{1}{100}\right)\)
\(=1+2\left(\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\right)\)
\(=2\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\)
Thế lại bài toán ta được:
\(\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+...+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}}\)
\(=\frac{2\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)}{\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}}=2\)
b/ Ta có:
A - B\(=\frac{-21}{10^{2016}}+\frac{12}{10^{2016}}+\frac{21}{10^{2017}}-\frac{12}{10^{2017}}\)
\(=\frac{9}{10^{2017}}-\frac{9}{10^{2016}}< 0\)
Vậy A < B
\(A=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+...+\frac{99}{2^{99}}+\frac{100}{2^{100}}\). So sánh A với 2
Ta có
\(A=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+...+\frac{99}{2^{99}}+\frac{100}{2^{100}}\)
\(2A=1+\frac{2}{2}+\frac{3}{2^2}+...+\frac{99}{2^{98}}+\frac{100}{2^{99}}\)
Suy ra \(A=2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\frac{100}{2^{100}}\)
Đặt \(n=\frac{1}{2}\) thì \(A=1+n+n^2+...+n^{99}-\frac{100}{2^{100}}\)
Xét \(B=1+n+n^2+...+n^{99}\Leftrightarrow B.n=n+n^2+n^3+...+n^{100}\)
\(\Leftrightarrow B.n=\left(1+n+n^2+...+n^{99}\right)+\left(n^{100}-1\right)\)
\(\Leftrightarrow B.n=B+n^{100}-1\Leftrightarrow B\left(n-1\right)=n^{100}-1\Leftrightarrow B=\frac{n^{100}-1}{n-1}\)
Suy ra \(A=\frac{\frac{1}{2^{100}}-1}{\frac{1}{2}-1}-\frac{100}{2^{100}}=2\left(1-\frac{1}{2^{100}}\right)-\frac{100}{2^{100}}=-\frac{102}{2^{100}}+2< 2\)
Vậy A < 2