Tính :
\(P=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{47.49}\)
TÍNH
K = \(\frac{1}{1.3}+\frac{1}{3.5}+...........+\frac{1}{47.49}\)
\(K=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{47.49}\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{47}-\frac{1}{49}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{49}\right)\)
\(=\frac{1}{2}.\frac{48}{49}\)
\(=\frac{24}{49}\)
\(K\times2=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{47.49}\)
\(K\times2=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{47}-\frac{1}{49}\)
\(K\times2=\frac{48}{49}\)
\(K=\frac{48}{49}\div2=\frac{24}{49}\)
\(K=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+..........+\frac{2}{47.49}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+........+\frac{1}{47}-\frac{1}{49}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{49}\right)\)
\(=\frac{1}{2}.\frac{48}{49}\)
\(=\frac{24}{49}\)
TÍNH
K = \(\frac{1}{1.3}+\frac{1}{3.5}+...........+\frac{1}{47.49}\)
\(K=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{47.49}\)
\(=2\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{47.49}\right):2\)
= \(\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{47}-\frac{1}{49}\right):2\)
= \(\left(1-\frac{1}{49}\right):2\)
\(=\frac{48}{49}:2\) \(\frac{24}{49}\)
\(K=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+....+\frac{1}{47}-\frac{1}{49}\right)=\frac{1}{2}.\frac{46}{147}=\frac{23}{147}\)
tim x : \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{47.49}=\frac{1}{x}\)
=1-1/3+1/3-1/5+.....+1/47-1/49
=1-1/49
=)x=49
...kcho minh nha
\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{47.49}=\frac{1}{x}\)
\(\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{47.49}\right)=\frac{1}{x}\)
\(\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{37}-\frac{1}{49}\right)=\frac{1}{x}\)
\(\frac{1}{2}\left(1-\frac{1}{49}\right)=\frac{1}{x}\)
\(\frac{1}{2}\cdot\frac{48}{49}=\frac{1}{x}\)
\(\frac{1}{x}=\frac{24}{49}\)
=>x=49/24
Tìm x:
\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{47.49}=\frac{1}{x}\)
\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{47.49}=\frac{1}{x}\\ \frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{47.49}\right)=\frac{1}{x}\\ \frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{45}-\frac{1}{47}+\frac{1}{47}-\frac{1}{49}\right)=\frac{1}{x}\)
\(\frac{1}{2}.\left(1-\frac{1}{49}\right)=\frac{1}{x}\\ \frac{1}{2}-\frac{1}{98}=\frac{1}{x}\\ \frac{49-1}{98}=\frac{1}{x}\\ \frac{24}{49}=\frac{1}{x}\\ \Rightarrow24x=49\\ x=\frac{49}{24}\\ x=2\frac{1}{24}\)
Cho \(\frac{1}{1.3}+\frac{1}{3.5}+....+\frac{1}{47.49}=\frac{1}{x}\). Tìm |x|
\(1\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{47.49}=\frac{1}{x}\)
\(1\frac{1}{3}+\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{47.49}\right)=\frac{1}{x}\)
\(\frac{4}{3}+\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{47}-\frac{1}{49}\right)=\frac{1}{x}\)
\(\frac{4}{3}+\frac{1}{2}\left(\frac{1}{3}-\frac{1}{49}\right)=\frac{1}{x}\)
\(\frac{4}{3}+\frac{1}{2}.\frac{46}{147}=\frac{1}{x}\)
\(\frac{4}{3}+\frac{23}{147}=\frac{1}{x}\)
\(\frac{73}{49}=\frac{1}{x}\)
=>\(x=\frac{49.1}{73}=\frac{49}{73}\Rightarrow\)I x I= \(\frac{49}{73}\)
Rút gọn Bt
A= \(\frac{1}{1.3}-\frac{1}{3.5}-\frac{1}{5.7}-.......-\frac{1}{47.49}-\frac{1}{49.51}\)
theo công thức, ta tính đc:
A = 1- 1/3 + 1/3 - 1/5 + 1/5 -1/7 +..... + 1/49 - 1/51
=> A bằng 1- 1/51 ( các cặp phân số đối nhau thì lược bỏ như - 1/3 và + 1/3 )
theo bài ra ta có:
A=1-1/3+1/3-1/5+1/5-1/7+......+1/47-1/49+1/49-1/51
A=1-1/51
Tính: B= \(\frac{1}{1.3}-\frac{1}{3.5}-....-\frac{1}{47.49}-\frac{1}{49.51}\)
C=\((-\frac{1}{7})^0+\left(-\frac{1}{7}\right)^1+...+\left(-\frac{1}{7}\right)^{2017}\)
\(\frac{1}{1.3}\)+\(\frac{1}{3.5}\)+\(\frac{1}{5.7}\)+.........+\(\frac{1}{47.49}\)=\(\frac{1}{x}\)
\(\Leftrightarrow\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{47}-\frac{1}{49}\right)=\frac{1}{x}\)
\(\Leftrightarrow\frac{1}{2}\left(1-\frac{1}{49}\right)=\frac{1}{x}\Rightarrow x=\frac{49}{24}\)
\(\frac{1}{2}.\left(1-\frac{1}{3}\right)+\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{7}\right)+...+\frac{1}{2}.\left(\frac{1}{47}-\frac{1}{49}\right)=\frac{1}{x}\)
\(\frac{1}{2}.\left(1-\frac{1}{49}\right)=\frac{1}{x}\)
\(\frac{24}{49}=\frac{1}{x}\)\(\Rightarrow x=\frac{49}{24}\)
Tìm x: \(\left(\frac{10}{1.2}+\frac{10}{2.3}+...+\frac{10}{49.50}\right)+2x=\frac{4}{1.3}+\frac{4}{3.5}+...+\frac{4}{47.49}-7x\)
Ta có: \(\left(\frac{10}{1.2}+\frac{10}{2.3}+...+\frac{10}{49.50}\right)+2x=\frac{4}{1.3}+\frac{4}{3.5}+...+\frac{4}{47.49}-7x\) (1)
Xét vế trái ta có:
\(\left(\frac{10}{1.2}+\frac{10}{2.3}+...+\frac{10}{49.50}\right)+2x\)
\(=10.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\right)\)
\(=10.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)+2x\)
\(=10.\left(1-\frac{1}{50}\right)+2x\)
\(=10.\frac{49}{50}+2x\)
\(=\frac{49}{5}+2x\) (2)
Xét vế phải ta có:
\(\frac{4}{1.3}+\frac{4}{3.5}+...+\frac{4}{47.49}-7x\)
\(=2.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{47.49}\right)-7x\)
\(=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{47}-\frac{1}{49}\right)-7x\)
\(=2.\left(1-\frac{1}{49}\right)-7x\)
\(=2.\frac{48}{49}-7x\)
\(=\frac{96}{49}-7x\) (3)
Từ (1), (2) và (3) => \(\frac{49}{5}+2x=\frac{96}{49}-7x\)
\(\Rightarrow2x+7x=\frac{96}{49}-\frac{49}{5}\)
\(\Rightarrow9x=\frac{480}{245}-\frac{2401}{245}\)
\(\Rightarrow9x=-\frac{1921}{245}\)
\(\Rightarrow x=-\frac{1921}{245}:9=-\frac{1921}{2205}\)
Vậy \(x=-\frac{1921}{2205}\)
Chúc bạn học tốt!
Ta có:\(\left(10-\frac{10}{2}+\frac{10}{2}-\frac{10}{3}+...+\frac{10}{49}-\frac{10}{50}\right)+2x=\left(2-\frac{2}{3}+\frac{2}{3}-\frac{2}{5}+...+\frac{2}{47}-\frac{2}{49}\right)-7x\)
\(\left(10-\frac{10}{50}\right)+2x=\left(2-\frac{2}{49}\right)-7x\)
\(\frac{49}{5}+2x=\frac{96}{49}-7x\)
\(7x+2x=\frac{96}{49}-\frac{49}{5}\)
\(9x=-\frac{1921}{245}\)
\(x=-\frac{1921}{245}:9\)
\(x=-\frac{1921}{2205}\)
Vậy \(x=-\frac{1921}{2205}\)