Những câu hỏi liên quan
TK
Xem chi tiết
NT
3 tháng 3 2015 lúc 20:14

nè, mi chơi ki kiểu mất dạy nha.tao bái mi làm sư phụ

Bình luận (0)
SD
9 tháng 4 2017 lúc 8:32

/ rs6h46sfda$

Bình luận (0)
NA
27 tháng 4 2017 lúc 20:10

Đặt (a;c)=q thì a=qa1;c=qc1a=qa1;c=qc1 (Vs (a1;c1a1;c1=1)
Suy ra ab=cd ⇔ba1=dc1⇔ba1=dc1
Dẫn đến d⋮a1d⋮a1 đặt d=a1d1d=a1d1 thay vào đc:
b=d1c1b=d1c1
Vậy an+bn+cn+dn=q2an1+dn1cn1+qncn1+an1dn1=(cn1+an1)(dn1+qn)an+bn+cn+dn=q2a1n+d1nc1n+qnc1n+a1nd1n=(c1n+a1n)(d1n+qn) là hợp số

=>  A là hợp số với mọi số nguyên n (đpcm)

Bình luận (0)
Xem chi tiết
QC
10 tháng 3 2020 lúc 16:21

Cậu tham khảo link này , bạn chịu khó viết nha :

https://olm.vn/hoi-dap/detail/3980234685.html

Chúc bạn hok tốt

Bình luận (0)
 Khách vãng lai đã xóa
PL
10 tháng 3 2020 lúc 16:24

theo đề: ab = cd hay a/d = c/b 

đặt a/d = c/b = k (với k thuộc N)

=> a = kd ; c = kb

từ đó

A = (kd)n + bn + (kb)n + dn 

A = kn(dn + bn) + (dn + bn)

A = (k+ 1)(dn + bn)

Vậy A là hợp số \(\forall n\in N\)

Bình luận (0)
 Khách vãng lai đã xóa
JQ
Xem chi tiết
CN
Xem chi tiết
H24
26 tháng 4 2020 lúc 20:58

\(ab=cd\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Đặt \(\frac{a}{c}=\frac{b}{d}=k\Rightarrow a=ck;b=dk\)

\(\Rightarrow ab=cd\Leftrightarrow cdk^2-cd=0\)

\(\Leftrightarrow cd\left(k^2-1\right)=0\Leftrightarrow k=\pm1\)

\(\left(+\right)k=1\Rightarrow\frac{a}{c}=\frac{b}{d}=1\Leftrightarrow a=c;b=d\)

\(\Rightarrow a^n+b^n+c^n+d^n=2a^n+2b^n\ge4\forall a,b>0\)

và \(2a^n+2b^n⋮2\Rightarrow a^n+b^n+c^n+d^n\)là hợp số

\(\left(+\right)k=-1\Rightarrow\frac{a}{c}=\frac{b}{d}=-1\Leftrightarrow a=-c;b=-d\)( vô lí )

Vì \(a,b,c,d>0\)

Vậy \(A=a^n+b^n+c^n+d^n\)là hợp số

Bình luận (0)
 Khách vãng lai đã xóa
H24
26 tháng 4 2020 lúc 21:00

Đoạn > = 4 kia là với mọi a,b thuộc N* nhé ><

Bình luận (0)
 Khách vãng lai đã xóa
NP
Xem chi tiết
CC
Xem chi tiết
H24
Xem chi tiết
BD
18 tháng 3 2017 lúc 12:44

Giả sử ƯCLN(a,c)=p(p\(\ge1\))

\(\Rightarrow a=p\times a1,c=p\times c1\)(a1,b1 là các số dương và (a1,c1)=1)

Từ đẳng thức ab=cd suy ra a1b=c1d do(a1,c1)=1 nên b\(⋮c1,d⋮a1\), ta có :

b=c1q và d=a1q(q\(\in Z^+\))

Từ đó suy ra : \(a^n+b^n+c^n+d^n=\left(a1^n+c1^n\right)\left(p^n+q^n\right)\)

do p\(\ge1,q\ge1\) nên p^n+q^n >=2 và a1,c1 là các số dương nên a^n+b^n+c^n+d^n là hợp số

Bình luận (2)
PT
Xem chi tiết
SY
Xem chi tiết
DL
24 tháng 4 2017 lúc 21:45

Đặt (a;c)=q thì a=\(qa_1\) ;    c=\(qc_1\) (Vs (a1;c1=1)

\(\Rightarrow\) ab=cd \(\Leftrightarrow\)ba1=dc1
Dẫn đến \(d⋮a_1\)

Đặt   \(d=a_1d_1\) thay vào đc:
\(b=d_1c_1\)
Vậy \(a^n+b^n+c^n+d^n=q^2a^n_1+d^n_1c^n_1+q^nc^n_1+a^n_1d^n_1=\left(c^n_1+a^n_1\right)\left(d^n_1+q^n\right)\)
là hợp số (QED)   

Bình luận (0)