Cho \(a,b,c,d\in Z^+\) thỏa \(a.b=c.d\)
CM : \(A=a^n+b^n+c^n+d^n\) là một hợp số với mọi \(n\in N\)
Cho các số nguyên dương a,b,c,d thỏa mãn a.b = c.d. Chứng minh rằng A= an + bn +cn + dn là một hợp số vớii mọi số tự nhiên n
nè, mi chơi ki kiểu mất dạy nha.tao bái mi làm sư phụ
Đặt (a;c)=q thì a=qa1;c=qc1a=qa1;c=qc1 (Vs (a1;c1a1;c1=1)
Suy ra ab=cd ⇔ba1=dc1⇔ba1=dc1
Dẫn đến d⋮a1d⋮a1 đặt d=a1d1d=a1d1 thay vào đc:
b=d1c1b=d1c1
Vậy an+bn+cn+dn=q2an1+dn1cn1+qncn1+an1dn1=(cn1+an1)(dn1+qn)an+bn+cn+dn=q2a1n+d1nc1n+qnc1n+a1nd1n=(c1n+a1n)(d1n+qn) là hợp số
=> A là hợp số với mọi số nguyên n (đpcm)
Cho các số nguyên dương a b c d thỏa mãn a.b=c.d Chứng
minh rằng A=a^n+b^n+c^n+d^n là một hợp số với mọi số tự
nhiên n
Ai đúng mik cho 3 tik
Cậu tham khảo link này , bạn chịu khó viết nha :
https://olm.vn/hoi-dap/detail/3980234685.html
Chúc bạn hok tốt
theo đề: ab = cd hay a/d = c/b
đặt a/d = c/b = k (với k thuộc N)
=> a = kd ; c = kb
từ đó
A = (kd)n + bn + (kb)n + dn
A = kn(dn + bn) + (dn + bn)
A = (kn + 1)(dn + bn)
Vậy A là hợp số \(\forall n\in N\)
a)Cho \(a,b,c,d\in Z^+\)thỏa:a2+b2=c2+d2
Cm:a+b+c+d là 1 hợp số
b)Cho \(a,b,c,d\in Z^+\)thỏa ab=cd
Cm:A=an+bn+cn+dn là hợp số với mọi \(n\in N\)
cho các số nguyên dương a,b,c.d thỏa mãn ab=cd . Chứng minh rằng A= \(a^n+b^n+c^n+d^{.n}\)là một hợp số với mọi số tự nhiên n
\(ab=cd\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Đặt \(\frac{a}{c}=\frac{b}{d}=k\Rightarrow a=ck;b=dk\)
\(\Rightarrow ab=cd\Leftrightarrow cdk^2-cd=0\)
\(\Leftrightarrow cd\left(k^2-1\right)=0\Leftrightarrow k=\pm1\)
\(\left(+\right)k=1\Rightarrow\frac{a}{c}=\frac{b}{d}=1\Leftrightarrow a=c;b=d\)
\(\Rightarrow a^n+b^n+c^n+d^n=2a^n+2b^n\ge4\forall a,b>0\)
và \(2a^n+2b^n⋮2\Rightarrow a^n+b^n+c^n+d^n\)là hợp số
\(\left(+\right)k=-1\Rightarrow\frac{a}{c}=\frac{b}{d}=-1\Leftrightarrow a=-c;b=-d\)( vô lí )
Vì \(a,b,c,d>0\)
Vậy \(A=a^n+b^n+c^n+d^n\)là hợp số
Đoạn > = 4 kia là với mọi a,b thuộc N* nhé ><
giúp mình với!!!
bài 1: cho các số nguyên dương a,b,c,d thỏa mãn a.b =c.d.CMR A= a mũ n + b mũ n + c mũ n + d mũ n là một hợp số với mọi số tự nhiên n
Cho \(a,b,c,d\)là các số nguyên dương thỏa \(ab=cd\)
CMR: \(A=a^n+b^n+c^n+d^n\) là một hợp số với mọi \(n\in N\)
Cho \(a,b,c,d\in Z^+\) thỏa \(ab=cd\)
CMR: A= \(a^n+b^n+c^n+d^n\) là mọt hợp số với \(n\in N\)
Giả sử ƯCLN(a,c)=p(p\(\ge1\))
\(\Rightarrow a=p\times a1,c=p\times c1\)(a1,b1 là các số dương và (a1,c1)=1)
Từ đẳng thức ab=cd suy ra a1b=c1d do(a1,c1)=1 nên b\(⋮c1,d⋮a1\), ta có :
b=c1q và d=a1q(q\(\in Z^+\))
Từ đó suy ra : \(a^n+b^n+c^n+d^n=\left(a1^n+c1^n\right)\left(p^n+q^n\right)\)
do p\(\ge1,q\ge1\) nên p^n+q^n >=2 và a1,c1 là các số dương nên a^n+b^n+c^n+d^n là hợp số
cho a,b,c,d thuộc N* thỏa mãn : a+b=c+d và a.b+1=c.d
CMR c=d
Cho các số nguyên dương a, b, c, d thỏa mãn ab = cd. CMR \(A=a^n+b^n+c^n+d^n\) là một hợp số với mọi số tự nhiên n
Đặt (a;c)=q thì a=\(qa_1\) ; c=\(qc_1\) (Vs (a1;c1=1)
\(\Rightarrow\) ab=cd \(\Leftrightarrow\)ba1=dc1
Dẫn đến \(d⋮a_1\)
Đặt \(d=a_1d_1\) thay vào đc:
\(b=d_1c_1\)
Vậy \(a^n+b^n+c^n+d^n=q^2a^n_1+d^n_1c^n_1+q^nc^n_1+a^n_1d^n_1=\left(c^n_1+a^n_1\right)\left(d^n_1+q^n\right)\)
là hợp số (QED)