Những câu hỏi liên quan
AH
Xem chi tiết
NT
28 tháng 10 2022 lúc 15:14

a: \(\text{Δ}=5^2-4\left(3m-1\right)=25-12m+4=-12m+29\)

Phương trình có hai nghiệm phân biệt khi -12m+29>0

=>-12m>-29

=>m<29/12

Để phương trình có nghiệm duy nhất thì -12m+29=0

=>m=29/12

Để phương trình vô nghiệm thì -12m+29<0

=>m>29/12

b: \(\text{Δ}=12^2-4\cdot2\cdot\left(-15m\right)=144+120m\)

Để phương trình có hai nghiệm pb thì 120m+144>0

=>m>-6/5

Để phương trình có nghiệm duy nhất thì 120m+144=0

=>m=-6/5

Để phương trình vô nghiệm thì 120m+144<0

=>m<-6/5

c: \(\text{Δ}=\left(2m-2\right)^2-4m^2=-8m+4\)

Để phương trình có hai nghiệm phân biệt thì -8m+4>0

=>-8m>-4

=>m<1/2

Để pt có nghiệm duy nhất thì -8m+4=0

=>m=1/2

Để pt vô nghiệm thì -8m+4<0

=>m>1/2

Bình luận (0)
PB
Xem chi tiết
CT
31 tháng 12 2018 lúc 12:17

Bình luận (0)
NH
Xem chi tiết
LF
15 tháng 8 2016 lúc 19:56

a)x2+5x+3m-1

Pt có 2 nghiệm trái dấu khi 

\(\Delta>0\Leftrightarrow m< \frac{29}{12}\).pt có 2 nghiệm phân biệt

\(x_{1,2}=\frac{5\pm\sqrt{29-12m}}{2}\)

Pt có 2 nghiệm âm phân biệt khi 

\(\begin{cases}\Delta\ge0\\p=1\end{cases}\)\(\Leftrightarrow\begin{cases}29-12m\ge0\\3m-1=1\end{cases}\)\(\Leftrightarrow m=\frac{2}{3}\left(tm\right)\)

Pt có 2 nghiệm dương phân biệt khi

\(\begin{cases}\Delta>0\\p=\frac{c}{a}>0\\S=\frac{b}{a}>0\end{cases}\)\(\Leftrightarrow\begin{cases}29-12m>0\\3m-1>0\\5>0\left(\text{đúng}\right)\end{cases}\)\(\Leftrightarrow\frac{1}{3}< m< \frac{29}{12}\)

 

 

 

 

Bình luận (1)
LF
15 tháng 8 2016 lúc 19:58

b và c tương tự

 

Bình luận (0)
HN
Xem chi tiết
H24
23 tháng 2 2021 lúc 17:53

Mình khuyên bạn thế này : 

Bạn nên tách những câu hỏi ra 

Như vậy các bạn sẽ dễ giúp

Và cũng có nhiều bạn giúp hơn !

Bình luận (0)
 Khách vãng lai đã xóa
LD
23 tháng 2 2021 lúc 19:49

Bài 1.

a) ( x - 3 )( x + 7 ) = 0

<=> x - 3 = 0 hoặc x + 7 = 0

<=> x = 3 hoặc x = -7

Vậy S = { 3 ; -7 }

b) ( x - 2 )2 + ( x - 2 )( x - 3 ) = 0

<=> ( x - 2 )( x - 2 + x - 3 ) = 0

<=> ( x - 2 )( 2x - 5 ) = 0

<=> x - 2 = 0 hoặc 2x - 5 = 0

<=> x = 2 hoặc x = 5/2

Vậy S = { 2 ; 5/2 }

c) x2 - 5x + 6 = 0

<=> x2 - 2x - 3x + 6 = 0

<=> x( x - 2 ) - 3( x - 2 ) = 0

<=> ( x - 2 )( x - 3 ) = 0

<=> x - 2 = 0 hoặc x - 3 = 0

<=> x = 2 hoặc x = 3

Bình luận (0)
 Khách vãng lai đã xóa
LD
23 tháng 2 2021 lúc 19:52

Bài 2.

a) \(\frac{x}{x+1}-1=\frac{3}{2}x\)

ĐKXĐ : x khác -1

<=> \(\frac{x}{x+1}-\frac{x+1}{x+1}=\frac{3}{2}x\)

<=> \(\frac{-1}{x+1}=\frac{3x}{2}\)

=> 3x( x + 1 ) = -2

<=> 3x2 + 3x + 2 = 0

Vi 3x2 + 3x + 2 = 3( x2 + x + 1/4 ) + 5/4 = 3( x + 1/2 )2 + 5/4 ≥ 5/4 > 0 ∀ x

=> phương trình vô nghiệm

b) \(\frac{4x}{x-2}-\frac{7}{x}=4\)

ĐKXĐ : x khác 0 ; x khác 2

<=> \(\frac{4x^2}{x\left(x-2\right)}-\frac{7x-14}{x\left(x-2\right)}=\frac{4x^2-8x}{x\left(x-2\right)}\)

=> 4x2 - 7x + 14 = 4x2 - 8x

<=> 4x2 - 7x - 4x2 + 8x = -14

<=> x = -14 ( tm )

Vậy phương trình có nghiệm x = -14

Bình luận (0)
 Khách vãng lai đã xóa
QL
Xem chi tiết
HM
30 tháng 9 2023 lúc 23:43

a)      \(2{x^2} - 3x + 1 > 0\)

Tam thức \(f\left( x \right) = 2{x^2} - 3x + 1\) có \(a + b + c = 2 - 3 + 1 = 0\) nên hai nghiệm phân biệt \({x_1} = 1\) và \({x_2} = \frac{1}{2}.\)

Mặt khác \(a = 2 > 0,\) do đó ta có bảng xét dấu sau:

Tập nghiệm của bất phương trình là: \(S= \left( { - \infty ;\frac{1}{2}} \right) \cup \left( {1; + \infty } \right).\)

b)     \({x^2} + 5x + 4 < 0\)

Tam thức \(f\left( x \right) = {x^2} + 5x + 4\) có \(a - b + c = 1 - 5 + 4 = 0\) nên phương trình có hai nghiệm phân biệt \(x =  - 1\) và \(x =  - 4.\)

Mặt khác \(a = 1 > 0,\) do đó ta có bảng xét dấu sau:

Tập nghiệm của bất phương trình là: \(S = \left( { - 4; - 1} \right).\)

c)      \( - 3{x^2} + 12x - 12 \ge 0\)

Tam thức \(f\left( x \right) =  - 3{x^2} + 12x - 12 =  - 3\left( {{x^2} - 4x + 4} \right) =  - 3{\left( {x - 2} \right)^2} \le 0\)

Do đó 

\( - 3{x^2} + 12x - 12 \ge 0 \Leftrightarrow  - 3{x^2} + 12x - 12 = 0 \Leftrightarrow  - 3{\left( {x - 2} \right)^2} = 0 \Leftrightarrow x = 2.\)

Tập nghiệm của bất phương trình là: \(S = \left( { 2} \right).\)

d)     \(2{x^2} + 2x + 1 < 0.\)

Tam thức \(f\left( x \right) = 2{x^2} + 2x + 1\) có \(\Delta  =  - 1 < 0,\) hệ số \(a = 2 > 0\) nên \(f\left( x \right)\) luôn dướng với mọi \(x,\) tức là \(2{x^2} + 2x + 1 > 0\) với mọi \(x \in \mathbb{R}.\)

\( \Rightarrow \) bất phương trình vô nghiệm

Bình luận (0)
H24
Xem chi tiết
EC
27 tháng 1 2022 lúc 8:45

a) \(x-2=0\Leftrightarrow x=2\)

b) \(x^2-2x=0\Leftrightarrow x\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

e) \(2x^2+5x+3=0\Leftrightarrow\left(2x+3\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=-1\end{matrix}\right.\)

f) \(x^2-x-12=0\Leftrightarrow\left(x-4\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)

Bình luận (2)
TP
Xem chi tiết
HN
22 tháng 7 2021 lúc 13:29

b) 5x(x-2000)-x+2000=0

\(\Rightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\\ \Rightarrow\left(x-2000\right)\left(5x-1\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-2000=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0+2000\\5x=0+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2000\\5x=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2000\\x=\dfrac{1}{5}\end{matrix}\right.\)

Bình luận (0)
TP
22 tháng 7 2021 lúc 14:46

Ai giúp minh làm bài 5 phía trên với

 

Bình luận (0)
NT
22 tháng 7 2021 lúc 23:15

c) Ta có: \(2x\left(x-2\right)+3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-3}{2}\end{matrix}\right.\)

d) Ta có: \(5x^2+x=0\)

\(\Leftrightarrow x\left(5x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-1}{5}\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
HT
Xem chi tiết
H24
13 tháng 3 2023 lúc 16:09

\(a,\sqrt{x^2-5x-1}=\sqrt{x-1}\)

Bình phương 2 vế pt , ta có :

\(x^2-5x-1=x-1\)

\(\Rightarrow x^2-5x-x=-1+1\)

\(\Rightarrow x^2-6x=0\)

\(\Rightarrow x\left(x-6\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

Thay lần lượt các giá trị trên vào pt, ta thấy \(x=6\) (thỏa)

Vậy pt có tập nghiệm \(S=\left\{6\right\}\)

Bình luận (0)
TT
13 tháng 3 2023 lúc 16:14

loading...  

Bình luận (0)
NT
13 tháng 3 2023 lúc 20:10

\(x^2-2x+2m^2-3m+1=0\Leftrightarrow x^2-2x+1=-2m^2+3m\)

Cho f(x) = x^2 - 2x + 1 

-> I(1;0) lập BBT ( bạn tự lập nhé ) 

Để pt có nghiệm khi \(-2m^2+3m\ge0\Leftrightarrow0\le m\le\dfrac{3}{2}\)

 

 

Bình luận (0)