giải và biện luận pt: \(\frac{ax-1}{x-1}+\frac{b}{x+1}=\frac{x\left(x^2+1\right)}{x^2-1}\)
Giải và biện luận phương trình \(\frac{ax-1}{x-1}+\frac{2}{x+1}=\frac{a\left(x^2+1\right)}{x^2-1}\)
Giả và biện luận các pt sau:
\(\)1) \(\frac{ax-1}{x-1}+\frac{b}{x+1}=\frac{a\left(x^2+1\right)}{x^2-1}\)
2) \(\frac{a}{ax-1}+\frac{b}{bx-1}=\frac{a+b}{\left(a+b\right)x-1}\)
3)\(\left|2x+m\right|=\left|2m-x\right|\)
4) \(\left|mx+1\right|=\left|3x+m-2\right|\)
Giải và biện luân phương trình:
\(\frac{ax-1}{x-1}+\frac{b}{x+1}=\frac{a\left(x^2+1\right)}{x^2-1}\)
\(ĐK:x\ne\pm1\)
\(\Leftrightarrow\frac{ax^2-x+ax-1+bx-b}{x^2-1}=\frac{a\left(x^2+1\right)}{x^2-1}\)
\(\Leftrightarrow\frac{ax^2+x\left(a-1+b\right)-b-1}{x^2-1}=\frac{ax^2+a}{x^2-1}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne\pm1\\a+b-1=0\\-b-1=a\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne\pm1\\a+b-1=0\\-b-1=a\end{cases}}\)
Giải ra :D
Bài 1: Giải phương trình
\(\frac{2}{a\left(b-x\right)}-\frac{2}{b\left(b-x\right)}=\frac{1}{a\left(c-x\right)}-\frac{1}{b\left(c-x\right)}\)
Bài 2: Giải phương trình và biện luận theo m
\(\frac{3}{x-m}-\frac{1}{x-2}=\frac{2}{x-2.m}\)
ĐKXĐ:\(\hept{\begin{cases}a,b\ne0\\x\ne b\\x\ne c\end{cases}}\)
Ta có:\(\frac{2}{a\left(b-x\right)}-\frac{2}{b\left(b-x\right)}=\frac{1}{a\left(c-x\right)}-\frac{1}{b\left(c-x\right)}\)
\(\Leftrightarrow\frac{2}{b-x}\left(\frac{1}{a}-\frac{1}{b}\right)=\frac{1}{c-x}\left(\frac{1}{a}-\frac{1}{b}\right)\)
\(\Leftrightarrow\left(\frac{1}{a}-\frac{1}{b}\right)\left(\frac{2}{b-x}-\frac{1}{c-x}\right)=0\)
Nếu \(a=b\)thì phương trình đúng với mọi nghiệm x
Nếu \(a\ne b\)thì phương trình có nghiệm
\(\frac{2}{b-x}-\frac{1}{c-x}=0\)
\(\Leftrightarrow\frac{2\left(c-x\right)}{\left(c-x\right)\left(b-x\right)}-\frac{1\left(b-x\right)}{\left(c-x\right)\left(b-x\right)}=0\)
\(\Rightarrow2c-2x-b+x=0\)
\(\Leftrightarrow-x=b-2c\)
\(\Leftrightarrow x=2c-b\left(tmđkxđ\right)\)
Vậy ..............................................................................................
Giúp vs ak :
giải và biện luận pt :
\(\frac{x+ab}{a+1}+\frac{x+bc}{c+1}+\frac{x+b^2}{b+1}=3b\left(a,b,c\ne-1\right)\)
\(\Leftrightarrow\frac{\left(x+1\right)+a\left(b+1\right)}{\left(a+1\right)}+\frac{\left(x+1\right)+c\left(b+1\right)}{\left(c+1\right)}+\frac{\left(x+1\right)+b\left(b+1\right)}{\left(b+1\right)}=3\left(b+1\right)\)
\(\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\left(x+1\right)=\left(b+1\right)\left(3-\frac{a}{a+1}-\frac{b}{b+1}-\frac{c}{c+1}\right)\)
\(\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\left(x+1\right)=\left(b+1\right)\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\)
\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=A=0\) pt N0 đúng mọi x. thuộc R
Nếu A khác 0 pt có nghiệm duy nhất x=b
a. \(\frac{a}{ax-1}\)+ \(\frac{b}{bx-1}\)= \(\frac{a+b}{\left(a+b\right)x-1}\) giải và biện luận pt
b. a(ax+b\(^2\)) -a\(^2\)+ b\(^2\)(x+a)
c. a(x-b)-1= b(1-2x)
Giải và biện luận các pt sau:(x là ẩn,m là tham số)
a)7(m-11)x-2x+14=5m
b)2xm+4(2m+1)=\(m^2+4\left(x-1\right)\)
c)\(\frac{mx+3}{6}+\frac{m^2-1}{2}=\frac{x+5}{10}+\frac{2}{5}\left(x+m^2+1\right)\)
d)\(\frac{x-a}{x-b}+\frac{x-b}{x-a}=2\)
d)
\(x\ne a,x\ne b\)
đặt \(\frac{x-a}{x-b}=t\Leftrightarrow t+\frac{1}{t}=2\Leftrightarrow\frac{t^2-2t+1}{t}=0\Rightarrow t=1\)
\(\frac{x-a}{x-b}=1\Leftrightarrow\frac{\left(x-a\right)-\left(x-b\right)}{x-b}=\frac{b-a}{x-b}=0\)
Vậy: \(a\ne b\) Pt vô nghiệm
a=b phương trinhg nghiệm với mọi x khác a, b
giải và biện luận pt có m là hằng số
\(\frac{m^2\left[\left(x+2\right)^2-\left(x-2\right)^2\right]}{8}-4x=\left(m-1\right)^2+3\left(2m+1\right)\)
Ta có :
\(\frac{m^2\left[\left(x+2\right)^2-\left(x-2\right)^2\right]}{8}-4x=\left(m-1\right)^2+3\left(2m+1\right)\)
\(\Leftrightarrow m^2x-4x=m^2+4m+4\)
\(\Leftrightarrow\left(m-2\right)\left(m+2\right)x=\left(m+2\right)^2\)
- Nếu \(m\ne\pm2\) thì \(x=\frac{m+2}{m-2}\)
- Nếu \(m=2\) thì \(0x=16\)
=> P/trình vô nghiệm .
- Nếu \(m=-2\) thì \(0x=0\)
=> PT có nghiệm bất kì
.....
Giải và biện luận các bất phương trình
a) \(\left(m-2\right)\ge\left(2m-1\right)x-3\)
b) \(\frac{ax+1}{a-1}>\frac{ax-1}{a+1}\) với a>1
a. \(m-2\ge\left(2m-1\right)x-3\Leftrightarrow m+1\ge\left(2m-1\right)x\)
Với \(2m-1=0\Rightarrow m=\frac{1}{2},bpt\Leftrightarrow\frac{3}{2}\ge0\) đúng với mọi x.
Với \(2m-1>0\Rightarrow m>\frac{1}{2},bpt\Leftrightarrow x\le\frac{m+1}{2m-1}\)
Với \(2m-1< 0\Rightarrow m< \frac{1}{2},bpt\Leftrightarrow x\ge\frac{m+1}{2m-1}\)
Với \(m>\frac{1}{2},\) S = ( \(-\infty;\frac{m+1}{2m-1}\)]
Vậy với \(m=\frac{1}{2}\Rightarrow S=R.\)
Với \(m< \frac{1}{2},\)S = [ \(\frac{m+1}{2m-1};+\infty\))
b. \(bpt\Leftrightarrow\frac{\left(ax+1\right)\left(a+1\right)-\left(ax-1\right)\left(a-1\right)}{a^2-1}>0\)
\(\Leftrightarrow\frac{2ax+2a}{a^2-1}>0\)
Với a > 1 thì \(a^2-1>0\Rightarrow ax+a>0\Rightarrow x+1>0\Rightarrow x>-1\forall a>1\)
Vậy với a > 1 thì bpt luôn có tập nghiệm \(S=\left(-1;+\infty\right)\)