Chứng minh
( 8^15 + 8^16 + 8^17 ) chia hết cho 73
Chứng minh
( 8^15 + 8^16 + 8^17 ) chia hết cho 73
\(8^{15}+8^{16}+8^{17}\)
\(\Rightarrow=8^{15}.1+8^{15}.8+8^{15}.8^2\)
\(\Rightarrow=8^{15}.\left(1+8+64\right)\)
\(\Rightarrow=8^{15}.73\)
Vì có 73 trong tích nên tích này chia hết cho 73
k mk nha
\(8^{15}+8^{16}+8^{17}\)
\(=8^{15}.1+8^{15}.8+8^{15}.8^2\)
\(=8^{15}.\left(1+8+64\right)\)
\(=8^{15}.73\)
Vì có 73 trong tích
=> tổng này chia hết cho 73
\(8^{15}+8^{16}+8^{17}=8^{15}.\left(1+8^1+8^2\right)=8^{15}.\left(1+8+64\right)=8^{15}.73\)
Vậy \(8^{15}+8^{16}+8^{17}\)chia hết cho 73
Các bạn k cho mình nha!
bài 1:chứng minh rằng
a.D=45+99+180 chia hết cho 9
b.B=16 mũ 5+2 mũ 15 chia hết cho 33
c.G=8 mũ 8+2 mũ 20 chia hết cho 17
chứng minh 1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64 < 1/3
Chứng minh 1/2 + 1/4 + 1/8 + 1/16+ 1/32 + 1/64 < 1/3
Chứng minh: ( 2x + 3y ) Chia hết cho 17 ki và chỉ khi ( 9x + 5y) chia hết cho 17
1 /2 -1 /4 + 1 /8-1 /16 + 1 /32-1 /64 < 1 /3
Cách 1:21/64 < 1/3
Cách 2:21/64 < 0.(3)
Đúng
1 /2 + 1 /4 + 1 /8 + 1 /16 + 1 /32 + 1 /64 < 1 /3
Cách 2:63/64 < 0.(3)
Ko đúng
Câu 3 mình ko biết
a)cho \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)là A
ta có:A=\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)
2A=\(\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\right)2\)
2A=\(1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\)
2A+A=\(\left(1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\right)+\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\right)\)
3A=\(1-\frac{1}{64}\Rightarrow3A=\frac{63}{64}\Rightarrow A=\frac{21}{64}< \frac{1}{3}\)
vậy \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
b) sai đề (\(\frac{63}{64}< \frac{1}{3}\)hay sao)
c)sai nối (nếu x=y=3 thì 2x+3y=17 chia hết nhưng 9x+5y=42 ko chia hết)
Chứng minh rằng 1+8+8^2+.....+8^800 chia hết cho 73
1/ Chứng minh A chia hết cho 15
2/ Cho B = 3 + 33 + 35 +....+31991
Chứng minh B chia hết cho 13 và B chia hết cho 41
3/ A = 119 + 118+ .... + 11 + 1
Chứng minh A chia hết cho 5
4/ Chứng minh:
a. 1088 + 8 chia hết cho 2
b. 88 + 220 chia hết cho 17
1 Chứng minh rằng :
a. A = ( \(1+3+3^2+...+3^{11}\)) chia hết cho 4
b. B = ( \(16^5+2^{^{15}}\)) chia hết cho 33
c.C = ( \(10^{28}+8\)) chia hết cho 72
d. D = (\(8^8+2^{20}\)) chia hết cho 17
a) \(A=1+2+3^2+....+3^{11}\)
\(=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{10}+3^{11}\right)\)
\(=\left(1+3\right)+3^2\left(1+3\right)+....+3^{10}\left(1+3\right)\)
\(=\left(1+3\right)\left(1+3^2+...+3^{10}\right)\)
\(=4\left(1+3^2+...+3^{10}\right)\)\(⋮\)\(4\)
b) \(B=16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}.\left(2^5+1\right)=2^{15}.33\)\(⋮\)\(33\)
c) \(C=10^{28}+8=1000...008\)(27 chữ số 0)
Nhận thấy: tổng các chữ số của C chia hết cho 9 => C chia hết cho 9
3 chữ số tận cùng của C chia hết cho 8 => C chia hết cho 8
mà (8;9) = 1 => C chia hết cho 72
d) \(D=8^8+2^{20}=2^{24}+2^{20}=2^{20}\left(2^4+1\right)=2^{20}.17\)\(⋮\)\(17\)
Chứng minh rằng :
a) S1=2+2^2+2^3+.........+2^99+2^100 chia hết cho 31
b) S2=16^5+2^15 chia hết cho 33
c) 53!-51! chia hết cho 29
d) 43^43-17^17 chia hết cho 10
e) 5^n+2+26.5^n +8^2n+1 chia hết cho 59
Chứng minh rằng:
1) ( 10^19+ 10^18+10^17) chia hết cho 555
2) ( 8^17-27^9- 9^13) chia hết cho 15
1) \(10^{19}+10^{18}+10^{17}=10^{16}.10^3+10^{16}.10^2+10^{16}.10=10^{16}.\left(1000+100+10\right)=10^{16}.1110\)
vì 1110 : 555 bằng 2
=> ................... chia hết cho 555
1) ( 1019+ 1018+1017) chia hết cho 555
= 1017.102+1018.10+1017
= 1017.(102+10+1)
= 1017.111
= 1016.10.111
= 1016.1110 = 1016.555.2
=> ( 1019+ 1018+1017) chia hết cho 555
Chứng minh rằng:
1) ( 10^19+ 10^18+10^17) chia hết cho 555
2) ( 8^17-27^9- 9^13) chia hết cho 15