Những câu hỏi liên quan
DT
Xem chi tiết
NC
Xem chi tiết
NL
15 tháng 12 2020 lúc 0:30

\(\sqrt{2-f\left(x\right)}=f\left(x\right)\Leftrightarrow\left\{{}\begin{matrix}f\left(x\right)\ge0\\f^2\left(x\right)+f\left(x\right)-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(x\right)=1\\f\left(x\right)=-2< 0\left(loại\right)\end{matrix}\right.\) 

\(\Rightarrow f\left(1\right)=f\left(2\right)=f\left(3\right)=1\)

\(\sqrt{2g\left(x\right)-1}+\sqrt[3]{3g\left(x\right)-2}=2.g\left(x\right)\)

\(VT=1.\sqrt{2g\left(x\right)-1}+1.1\sqrt[3]{3g\left(x\right)-2}\)

\(VT\le\dfrac{1}{2}\left(1+2g\left(x\right)-1\right)+\dfrac{1}{3}\left(1+1+3g\left(x\right)-2\right)\)

\(\Leftrightarrow VT\le2g\left(x\right)\)

Dấu "=" xảy ra khi và chỉ khi \(g\left(x\right)=1\)

\(\Rightarrow g\left(0\right)=g\left(3\right)=g\left(4\right)=g\left(5\right)=1\)

Để các căn thức xác định \(\Rightarrow\left\{{}\begin{matrix}f\left(x\right)-1\ge0\\g\left(x\right)-1\ge0\end{matrix}\right.\)

Ta có:

\(\sqrt{f\left(x\right)-1}+\sqrt{g\left(x\right)-1}+f\left(x\right).g\left(x\right)-f\left(x\right)-g\left(x\right)+1=0\)

\(\Leftrightarrow\sqrt{f\left(x\right)-1}+\sqrt{g\left(x\right)-1}+\left[f\left(x\right)-1\right]\left[g\left(x\right)-1\right]=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(x\right)=1\\g\left(x\right)=1\end{matrix}\right.\) \(\Leftrightarrow x=3\)

Vậy tập nghiệm của pt đã cho có đúng 1 phần tử

Bình luận (0)
NC
Xem chi tiết
NH
14 tháng 8 2016 lúc 11:47

Hỏi đáp Toán

Bình luận (0)
29
Xem chi tiết
NM
3 tháng 1 2022 lúc 17:25

\(ĐK:x\ge1\\ PT\Leftrightarrow\sqrt{x+4}=2-\sqrt{x-1}\\ \Leftrightarrow x+4=x+3-4\sqrt{x-1}\\ \Leftrightarrow4\sqrt{x-1}=-1\Leftrightarrow x\in\varnothing\)

Vậy \(S\in\varnothing\)

Bình luận (0)
NC
Xem chi tiết
NH
13 tháng 8 2016 lúc 22:01

câu 8L \(x+2\sqrt{x}+1=\left(\sqrt{x}+1\right)^2\)

ta thấy \(\sqrt{x}+1>=1\)

=> \(\left(\sqrt{x}+1\right)^2>=1\)

=> GTNN =1 khi x=0

bài 6: |x-1|=x+1

TH1: x-1=x+1<=> 0x=2      vô nghiệm

TH2: x-1=-1-x

<=> 2x=0<=> x=0

vậy tập nghiệm S={0}

câu 5: \(\sqrt{x^2+3}=\sqrt{4x}\) diều kiện x>=0

pt<=> \(x^2+3=4x\)

<=> x=3 hoặc x=1

vậy tập nghiệm S={1;3}

câu 2: \(\sqrt{x-2}\left(2\sqrt{x-2}-3\right)=2x-13\)

điều kiện x>=2

đặt \(\sqrt{x-2}=a\)>=0

=> pt có dạng a(2a-3)=4a2-9

<=> 2a2+3a-9=0

<=> a=-3 (loại) hoặc a=3/2

thya vào rồi giải: x-2=9/4

=> a=17/4 (thỏa )

các câu khác tương tự

 

Bình luận (0)
LH
13 tháng 8 2016 lúc 21:25

vòng mấy z

Bình luận (0)
NC
Xem chi tiết
HP
20 tháng 12 2020 lúc 22:41

ĐK: \(-2\le x\le2\)

Đặt \(\sqrt{x+2}+\sqrt{2-x}=t\left(2\le t\le2\sqrt{2}\right)\)

Phương trình đã cho trở thành:

\(t+t^2-4+2m+3=0\)

\(\Leftrightarrow2m=f\left(t\right)=-t^2-t+1\)

Phương trình đã cho có nghiệm khi \(minf\left(t\right)\le2m\le maxf\left(t\right)\)

\(\Leftrightarrow-7-2\sqrt{2}\le2m\le-5\)

\(\Leftrightarrow\dfrac{-7-2\sqrt{2}}{2}\le m\le-\dfrac{5}{2}\)

Bình luận (0)
TB
Xem chi tiết
LF
8 tháng 8 2016 lúc 7:38

\(pt\Leftrightarrow\sqrt{x^2+x-6}=\sqrt{x^2+2}\)

Ta thấy 2 vế luôn dương bình phương lên ta có:

\(\sqrt{\left(x^2+x-6\right)^2}=\sqrt{\left(x^2+2\right)^2}\)

\(\Rightarrow x^2+x-6=x^2+2\)

\(\Rightarrow x^2-x^2+x=6+2\)

\(\Rightarrow x=8\)

Bình luận (0)
NA
8 tháng 8 2016 lúc 7:39

Hỏi đáp Toán

Bình luận (0)
VH
Xem chi tiết
TL
22 tháng 10 2015 lúc 21:29

ĐK: |x| > 1/2

=> \(\sqrt{2\left|x\right|-1}=-x\) => - x > 0 => x < 0 => |x| = - x

Bình phương 2 vế ta có: 2(-x) - 1 = (-x) 2 => x+ 2x + 1 = 0 => (x+1)= 0 => x = -1 (Thỏa mãn)

Vậy...

Bình luận (0)
MN
Xem chi tiết