Với giá trị nào của x E Z thì phân số A=ó giá trị là một số nguyên
với giá trị nguyên nào của n thì phân số A=ó giá trị là một số nguyên ? tính giá trị đó
Với giá trị nào của x thuộc z thì phân số a=3x+9/x+2 có giá trị là một số nguyên
Với giá trị nào nào của x thuộc z thì phân số A=\(\frac{3x+9}{x+2}\) có giá trị là 1 số nguyên
\(A=\frac{3x+9}{x+2}=\frac{3\left(x+2\right)+3}{x+2}=3+\frac{3}{x+2}\)
Vậy để A nguyên thì x+2\(\in\)Ư(3)
Mà: Ư(3)={1;-1;3;-3}
=>x+2={1;-1;3;-3}
Ta có bảng sau:
x+2 | 1 | -1 | 3 | -3 |
x | -1 | -3 | 1 | -5 |
Vậy x={-5;-3;-1;1} thì A nguyên
Giải:
Để A là một số nguyên thì \(3x+9⋮x+2\)
\(\Rightarrow\left(3x+6\right)+3⋮x+2\)
\(\Rightarrow3.\left(x+2\right)+3⋮x+2\)
\(\Rightarrow3⋮x+2\)
\(\Rightarrow x+2\left\{\pm1;\pm3\right\}\) ( Vì A là số nguyên )
Với x + 2 = 1 thì x = -1
Với x + 2 = -1 thì x = -3
Với x + 2 = 3 thì x = 1
Với x + 2 = -3 thì x = -5
Vậy \(x\in\left\{-1;-3;1;5\right\}\)
cho A=4n + 3/n-1(n thuộc Z).
a)Với giá trị nào của n thì A là phân số
b)Với giá trị nào của n thì A là một số nguyên
a) Với giá trị nào của n thì phân số sau có giá trị là số nguyên A= 3/n-5
b) Cho phân số n+9/n-6 ( n € Z , n > 6 ) . Tìm các gái trị của n để phân số có giá trị là số nguyên dương
a) Để \(A\inℤ\)
\(\Rightarrow3⋮n-5\)
\(\Rightarrow n-5\inƯ\left(3\right)\)
\(\Rightarrow n-5\in\left\{1;-1;3;-3\right\}\)
Lập bảng xét các trường hợp :
\(n-1\) | \(1\) | \(3\) | \(-1\) | \(-3\) |
\(n\) | \(2\) | \(4\) | \(0\) | \(-2\) |
Vậy \(n\in\left\{2;4;0\right\}\)
b) Để \(\frac{n+9}{n-6}\inℕ\Leftrightarrow n+9⋮n-6\)
\(\Rightarrow n-6+15⋮n-6\)
Vì \(n-6⋮n-6\)
\(\Rightarrow15⋮n-6\)
\(\Rightarrow n-6\inƯ\left(15\right)\)
\(\Rightarrow n-6\in\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
Lập bảng xét các trường hợp ta có:
\(n-6\) | \(1\) | \(-1\) | \(3\) | \(-3\) | \(5\) | \(-5\) | \(15\) | \(-15\) |
\(n\) | \(7\) | \(5\) | \(9\) | \(3\) | \(11\) | \(1\) | \(21\) | \(-9\) |
Vậy \(n\in\left\{7;5;9;3;11;1;21;-9\right\}\)
Cho \(A=\dfrac{2n+3}{n}\left(n\in Z\right)\)
a, Với giá trị nào của n thì A là phân số.
b, Với giá trị nào của n thì A là số nguyên
a, n khác 0
b, \(A=\dfrac{2n+3}{n}=2+\dfrac{3}{n}\Rightarrow n\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
n | 1 | -1 | 3 | -3 |
a, để \(A=\dfrac{2n+3}{n}\) là p/s \(\Rightarrow n\ne0\)
b,\(\dfrac{2n+3}{n}=\dfrac{2n}{n}+\dfrac{3}{n}=2+\dfrac{3}{n}\)
để \(2+\dfrac{3}{n}\) là số nguyên \(\Leftrightarrow\dfrac{3}{n}\) là số nguyên
\(\Rightarrow n\in\text{Ư}\left(3\right)=\left\{\pm1;\pm3\right\}\)
vậy.......
Đề bài hỏi, yêu cầu điều gì đó em?
Cho A=2n+3/n (n€Z)
a) Với giá trị nào của n thì A là phân số
b) Với giá trị nào của n thì A là số nguyên
\(a)\) Để A là phân số thì \(n\ne0\)
\(b)\) Ta có :
\(A=\frac{2n+3}{n}=\frac{2n}{n}+\frac{3}{n}=2+\frac{3}{n}\)
Để A là số nguyên thì \(\frac{3}{n}\) phải là số nguyên \(\Rightarrow\)\(3⋮n\)\(\Rightarrow\)\(n\inƯ\left(3\right)\)
Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow\)\(n\in\left\{1;-1;3;-3\right\}\)
Vậy để A là số nguyên thì \(n\in\left\{1;-1;3;-3\right\}\)
Chúc bạn học tốt ~
Cho biểu thức A = 1/2-n ( n thuộc Z)
a, Với giá trị nào của n thì A là phân số
b,Với giá trị nào của n thì A là số nguyên
a,Để A là p/số thì mẫu số khác 0=> 2-n khác 0=>n khác 2
Vậy n khác 2 thì A là phân số
b,Để A là số nguyên thì tử số chia hết cho mẫu số => 1 chia hết cho 2-n
=>2-n thuộc Ư(1)={1;-1}
=>n thuộc {1;3}
Vậy n thuộc {1;3} thì A là số nguyên.
Cho biểu thức A = (2n + 2)/(2n - 4) ( n thuộc Z)
a, Với giá trị nào của n thì A là phân số
b,Với giá trị nào của n thì A là số nguyên
a, \(n\ne2\)
b, \(n\subset1;-1;3;5\)