Cho∆ABC có B^=35°,C^=65°,AB=32cm và đ/cao AH. Tính AH,BH,CH
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho tam giác abc có góc b=35độ, góc c=65độ, ab=32cm và vẽ đường cao ah. tính ah, bh, ch
AH=sin35*AB=........................
Áp dụng pytago ta có AH^2+BH^2=AB^2
Áp dụng hệ thức lượng AH^2=BH*CH
tự thay số vô tính nha bạn
Cho tam giác ABC vông tại A đường cao AH Biết BH=32cm CH=18cm Tính AB,AC,AH,góc B góc C
cho tam giác abc có B=35 độ,C=65 độ,AB=32cm.vẽ đường cao AH rồi tính AH,BH,CH,góc BAC
góc BAC=180-35-65=80 độ
Xét ΔAHB vuông tại H có sin B=AH/AB
nên AH=18,35(cm)
=>BH=26,22(cm)
Xét ΔAHC vuông tại H có tan C=AH/HC
nên HC=8,56(cm)
cho tam giác ABC kẻ đường cao AH biết BH = 18cm CH = 32cm tính AB và AC
Ta có: BC=HB+HC=18+32=50
-Xét \(\Delta ABC\)có: BC2=AB2+AC2 (Theo định lý Py-ta-go)
Mà \(\hept{\begin{cases}AB^2=AH^2+HB^2\\AC^2=AH^2+HC^2\end{cases}}\)
=> BC2=AH2+HB2+AH2+HC2
=> 502=2AH2+182+322
=> 2500=2AH2+324+1024
=> 2500=2AH2+1348
=> 2AH2=1152
=> AH2=576
=> AH=24
=> \(\hept{\begin{cases}AB^2=AH^2+HB^2=24^2+18^2=900\\AC^2=AH^2+HC^2=24^2+32^2=1600\end{cases}}\)
=> AB=30
AC=40
Vậy AB=30 cm
AC=40cm
Cho tam giác ABC, Kẻ đường cao AH. Biết BH = 18cm, CH = 32cm. Tính các cạnh AB và AC
Cho tam giác ABC vuông tại A , kẻ đường cao AH , biết BH=18cm; CH=32cm . Tính cạnh AB và AC
Áp dụng định lý Py-ta-go vào ΔABHta có :
AB^2=AH^2+BH^2
=AH^2+18^2
=AH^2+324
⇒AH^2=AB^2−324
Áp dụng định lý Py-ta-go vào ΔAHC ta có
AC^2=HC^2+AH^2
=322+(AB^2−324)
=1024−324+AB^2
=700+AB^2
⇒AC=√700+AB2
Áp dụng định lý Py-ta-go vào ΔABHta có :
AB ^ 2 = AH ^ 2 + BH ^ 2
=AH^2+18^2
=AH^2+324
⇒ AH ^ 2 = AB ^ 2−324
Áp dụng định lý Py-ta-go vào ΔAHC ta có
AC^2=HC^2+AH^2
= 322 + (AB ^ 2−324)
= 1024−324 + AB ^ 2
= 700 + AB ^ 2
⇒ AC = √700 + AB2.
HT
mk okie với lời giải của thắng mk làm giống bạn ý
Cho tam giác ABC vuông lại A. Kẻ đường cao AH, biết BH =18cm; CH = 32cm. Tính các cạnh AB và AC.
Nguyễn Thảo Nguyên
em chịu khó gõ link này lên google
https://olm.vn/hoi-dap/detail/99235669166.html
Thế lên google mak gõ cho nhanh nha bn!
Cho Tam Giác ABC Vuông tại A;Đ / cao AH ; A, Biết AH=6cm , BH=4.5cm . tính AB,AC,BC,HC ; b, Biết AB=6cm , BH=3cm Tính AH,AC,CH
a) ÁP dụng Pytago ta có: AH2 + HB2 = AB2
=> AB2 = 62 + 4,52 =56,25
=> AB = 7,5
Áp dụng hệ thức lượng ta có: AB2 = BH.BC
=> \(BC=\frac{AB^2}{BH}=12,5\)
=> \(HC=BC-BH=12,5-4,5=8\)
Áp dụng hệ thức lượng ta có:
\(AC^2=HC.BC\)
=> \(AC=\sqrt{HC.BC}=10\)
b) Áp dụng Pytago ta có: AB2 = BH2 + AH2
=> AH2 = AB2 - BH2 = 27
=> \(AH=3\sqrt{3}\)
Áp dụng hệ thức lượng ta có:
\(AH^2=BH.HC\)
=> \(HC=\frac{AB^2}{BH}=12\)
=> BC = HC + BH = 15
Áp dụng hệ thức lượng ta có:
AC2 = HC.BC
=> \(AC=\sqrt{HC.BC}=6\sqrt{5}\)
a) Tam giác ABH vuông tại H, áp dụng định lý PyTago
Ta có: \(AB=\sqrt{AH^2+BH^2}=\sqrt{6^2+4,5^2}=7,5\) (Cm)
Tam giác ABC vuông tại A, áp dụng hệ thức: \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{AC^2}=\frac{1}{AH^2}-\frac{1}{AB^2}=\frac{1}{6^2}-\frac{1}{7,5^2}=\frac{1}{100}\)
\(\Rightarrow AC^2=100\Rightarrow AC=10\) (Cm)
Tam giác ABC vuông tại A, áp dụng định lý Pytago, ta có:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{7,5^2+10^2}=12,5\) (Cm)
\(HC=BC-BH=12,5-4,5=8\) (Cm)
b) Tam giác ABH vuông tại H, áp dụng định lý Pytago, ta có:
\(AH=\sqrt{AB^2-BH^2}=\sqrt{6^2-3^2}=3\sqrt{3}\) (Cm)
Tam giác ABC vuông tại A, áp dụng hệ thức ta được:
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{AC^2}=\frac{1}{AH^2}-\frac{1}{AB^2}=\frac{1}{\left(3\sqrt{3}\right)^2}-\frac{1}{6^2}=\frac{1}{108}\)
\(\Rightarrow AC=\sqrt{108}=6\sqrt{3}\) (Cm)
Tam giác ACH vuông tại H, áp dụng định lý Pytago ta có:
\(CH=\sqrt{AC^2-AH^2}=\sqrt{\left(6\sqrt{3}\right)^2-\left(3\sqrt{3}\right)^2}=9\) (Cm)
1) a. cho tam giác ABC vuong tại A . AB = 7 , AC =9 . Đường cao AH . TÍNH BC và AH
b. cho tam giác ABC vuông tại A .AB = AC. Đường cao AH . BH = CH. AH =5 . Tính AB ,AC ,BH ,CH
VẼ HÌNH HƠI XẤU THÔNG CẢM NHA
áp dụng hệ thức lượng trong tam giác vuông ABC ta có \(AB\cdot AC=AH\cdot BC\) \(\Rightarrow AH\cdot BC=63\) (1)
áp dụng đl pitagovao tam giác vuông ABC ta có \(AB^2+AC^2=BC^2\Rightarrow BC=\sqrt{130}\)
thay vao (1) ta co \(AH\cdot BC=63\Rightarrow AH=\frac{63}{\sqrt{130}}\)