Tìm các số nguyên x và y sao cho: (x+2)^2+2.(y-3)^2<4
Tìm các số nguyên x, y sao cho (x-3).(y+2)=5
Tìm các số nguyên x, y sao cho (x-2).(y+1)=5
Ai đó giúp mk với
a) Ta có: (x-3)(y+2)=5
nên (x-3) và (y+2) là ước của 5
\(\Leftrightarrow x-3;y+2\in\left\{1;-5;-1;5\right\}\)
Trường hợp 1:
\(\left\{{}\begin{matrix}x-3=1\\y+2=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=3\end{matrix}\right.\)
Trường hợp 2:
\(\left\{{}\begin{matrix}x-3=5\\y+2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=-1\end{matrix}\right.\)
Trường hợp 3:
\(\left\{{}\begin{matrix}x-3=-1\\y+2=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-7\end{matrix}\right.\)
Trường hợp 4:
\(\left\{{}\begin{matrix}x-3=-5\\y+2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-3\end{matrix}\right.\)
Vậy: \(\left(x,y\right)\in\left\{\left(4;3\right);\left(8;-1\right);\left(2;-7\right);\left(-2;-3\right)\right\}\)
b) Ta có: (x-2)(y+1)=5
nên x-2 và y+1 là các ước của 5
\(\Leftrightarrow x-2;y+1\in\left\{1;-1;5;-5\right\}\)
Trường hợp 1:
\(\left\{{}\begin{matrix}x-2=1\\y+1=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)
Trường hợp 2:
\(\left\{{}\begin{matrix}x-2=5\\y+1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=0\end{matrix}\right.\)
Trường hợp 3:
\(\left\{{}\begin{matrix}x-2=-1\\y+1=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-6\end{matrix}\right.\)
Trường hợp 4:
\(\left\{{}\begin{matrix}x-2=-5\\y+1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-2\end{matrix}\right.\)
Vậy: \(\left(x,y\right)\in\left\{\left(3;4\right);\left(7;0\right);\left(1;-6\right);\left(-3;-2\right)\right\}\)
a: Tìm số tự nhiên x sao cho x+15 là bội của x+3
b:tìm các số nguyên x,y sao cho {x+1}.{y-2}=3
c:tìm các số nguyên x sao cho [x+2].[y-1]=2
g:tìm 2 số tự nhiễn,y biết x+y=12 va ƯCLN[x,y]=5
h:tim 2 số tự nhiên x,y biết x+y=32 và ƯCLN=[x,y]=8
a) x+15 là bội của x+3
\(\Rightarrow\)x+15\(⋮\)x+3
\(\Rightarrow\)x+3+12\(⋮\)x+3
x+3\(⋮\)x+3
\(\Rightarrow\)12\(⋮\)x+3
\(\Rightarrow x+3\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)
\(\Rightarrow x\in\left\{-4;-2;-5;-1;-6;0;-7;1;-15;9\right\}\)
Vậy x\(\in\){-4;-2;-5;-1;-6;0;-7;1;-15;9}
b) (x+1).(y-2)=3
\(\Rightarrow\)x+1 và y-2 thuộc Ư(3)={1;-1;3;-3}
Có :
x+1 | 1 | -1 | 3 | -3 |
x | 0 | -2 | 2 | -4 |
y+2 | 3 | -3 | 1 | -1 |
y | 1 | -5 | -1 | -3 |
Vậy (x;y)\(\in\){(0;1);(-2;-5);(2;-1);(-4;-3)}
Câu c tương tự câu b
g) Ta có : (x,y)=5
\(\Rightarrow\hept{\begin{cases}x⋮5\\y⋮5\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=5m\\y=5n\\\left(m,n\right)=1\end{cases}}\)
Mà x+y=12
\(\Rightarrow\)5m+5n=12
\(\Rightarrow\)5(m+n)=12
\(\Rightarrow\)m+n=\(\frac{12}{5}\)
Bạn có thể xem lại đề được không ạ? Vì đến đây 12 không chia hết cho 5 nhé! Phần h bạn nên viết lại đề vì ƯCLN=[x,y]=8 tớ không hiểu lắm...
Ehhhxjeiigcjivjfibhfjfjidifofidbgfjcufychcnl Ochocinco and the new year has a nice 👌👍✨👏🙂that is the same thing about this place of the year for hiiepj
Tìm các số nguyên x và y sao cho: (x+2)^2+2.(y-3)^2<4
Bài 1:Tìm các số nguyên x,y sao cho (x-2)mũ 2 nhân y-3=-4
Bài 2:Tìm các số nguyên x,y sao cho (x+2)mũ 2 +2 nhân(y-3) mũ 2
Giari giúp mình nha
Tìm các số nguyên x và y sao cho: (x+2)^2+2.(y-3)^2<4
Biến đổi bt tương đương : (x^2-1)/2 =y^2
Ta có: vì x,y là số nguyên dương nên
+) x>y và x phải là số lẽ.
Từ đó đặt x=2k+1 (k nguyên dương);
Biểu thức tương đương 2*k*(k+1)=y^2 (*);
Để ý rằng:
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là :
{1,y, y^2} ;
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1;
=>x=3.
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).
Biến đổi bt tương đương :
(x^2-1)/2 =y^2
Ta có: vì x,y là số nguyên dương nên +) x>y và x phải là số lẽ. Từ đó đặt x=2k+1 (k nguyên dương); Biểu thức tương đương 2*k*(k+1)=y^2 (*); Để ý rằng: Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là :
{1,y, y^2} ; từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1; =>x=3. Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).
Biến đổi bt tương đương :
(x^2-1)/2 =y^2
Ta có: vì x,y là số nguyên dương nên +) x>y và x phải là số lẽ. Từ đó đặt x=2k+1 (k nguyên dương); Biểu thức tương đương 2*k*(k+1)=y^2 (*); Để ý rằng: Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là :
{1,y, y^2} ; từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1; =>x=3. Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).
a) Tìm tất cả các số nguyên tố p và các số nguyên dương x,y biết : p -1=2x(x+2) và p2-1 =2y(y+2)
b) Tìm tất cả các số nguyên dương n sao cho tồn tại x,y,z là các số nguyên dương thỏa mãn x3+y3 +z3 =n.x2y2z2
Tìm các số nguyên x và y sao cho x^3+x^2+x+1=y^3
x^3+x^2+x+1=y^3 => y^3 - x^3 = x^2 + x + 1 = (x + 1/2)^2 + 3/4 > 0
=> y^3 > x^3 (1)
mặt khác:
5x^2 +11x+5 =5(x+11/10)^2 +19/20 > 0
y^3 = x^3 + x^2 + x +1 < x^3 + x^2 + x +1 + 5x^2 + 11x +5 = x^3 +6x^2 +12x +8 = (x + 2)^3 (2)
(1) và (2) => y^3 = (x + 1)^3 => y = x +1
=> x^3+x^2 +x +1 = x^3 +3x^2 +3x +1 = y^3
<=> 2x^2 + 2x =0
<=> 2x(x+1)=0
=> x = 0 và y=1
hoặc x = -1 và y = 0
x^3+x^2+x+1=y^3 => y^3 - x^3 = x^2 + x + 1 = (x + 1/2)^2 + 3/4 > 0
=> y^3 > x^3 (1)
mặt khác:
5x^2 +11x+5 =5(x+11/10)^2 +19/20 > 0
y^3 = x^3 + x^2 + x +1 < x^3 + x^2 + x +1 + 5x^2 + 11x +5 = x^3 +6x^2 +12x +8 = (x + 2)^3 (2)
(1) và (2) => y^3 = (x + 1)^3 => y = x +1
=> x^3+x^2 +x +1 = x^3 +3x^2 +3x +1 = y^3
<=> 2x^2 + 2x =0
<=> 2x(x+1)=0
=> x = 0 và y=1
hoặc x = -1 và y = 0
1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố
2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố
3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương
4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p
5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab +c ( a + b )
Chứng minh: 8c + 1 là số cp
6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3
Chứng minh: 9x – 1 là lập phương đúng
7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c
8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1
Chứng minh: ( x + y )^2 + ( xy – 1 )^2 không phải là số cp
9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2
10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương
11, Cho các số nguyên n thuộc Z, CM:
A = n^5 - 5n^3 + 4n \(⋮\)30
B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ
C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42
1)Tìm tất cả các số nguyên dương n sao cho :2n-1 chia hết cho 7
2)Tìm số nguyên x,y sao cho :|x-1|+|x-2|+|y-3|+|y-4|=3