Tìm x,y,z
\(\frac{x}{5}=y=\frac{z}{-2}và-x-y+2z=160\)
\(\frac{x}{5}\)=y=\(\frac{z}{-2}\)và -x-y+2z=160. Tìm x; y ; z
Tìm x; y ; z biết \(\frac{x}{5}\)=y=\(\frac{z}{-2}\)và -x - y+2z=160
Tìm x,y,z
\(\frac{x+1}{3}=\frac{y-2}{5}=\frac{2z+14}{9}\) và x + z = y
Tìm x, y , z
\(\frac{x+1}{3}=\frac{y-2}{5}=\frac{2z+14}{9}\) và x + z = y
Ta có: \(\frac{x+1}{3}=\frac{2z+14}{9}=\frac{2x+2}{6}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x+1}{3}=\frac{2z+14}{9}=\frac{2x+2}{6}=\frac{2z+14+2x+2}{9+6}=\frac{2.\left(x+z\right)+16}{15}=\frac{2.y+16}{15}\)
\(=\frac{y-2}{5}\)
=> (2.y + 16).5 = (y - 2).15
=> 10y + 80 = 15y - 30
=> 80 + 30 = 15y - 10y
=> 110 = 5y
=> y = 110 : 5 = 22
Thay y = 22 vào đề bài ta có: \(\frac{x+1}{3}=\frac{22-2}{5}=4\)
=> x + 1 = 4.3 = 12
=> x = 12 - 1 = 11
Lại có: x + z = y
=> 11 + z = 22
=> z = 22 - 11 = 11
Vậy x = 11; y = 22; z = 11
a) x/-2=-y/4=z/5 và x-2y+3z = 1200
b)x/5=y/1=z/-2 và x+y-2z=160
Tìm x,y,z
a. ta có -y/4=-2y/8 và z/5=3z/15
Aps dụng tính chất dãy tỉ số = nhauta có
x+-2y+3z/21=1200/21
do đó
x/-2=1200/21=>-x=-200/7=>x=200/7
cứ như thế bạn làm tiếp
câu b cũng thế chỉ cần biến đổi z/-2=-2z/4 rồi tính như câu a
nhớ tick cho mình nha
vậy còn câu 2 thì sao bạn? mik cũng định hỏi câu 2
bạn cường nguyễn văn hình như sai r
tìm các số x,y,z biết \(\frac{3.x-2.y}{37}=\frac{5.y-3.z}{15}=\frac{2.z-5.x}{2}\)và 10x-3y-2z=-4
tìm x,y,z biết
x/5=y/1=z/-2 và x+y-2z =160
Câu hỏi của Phác Trí Nghiên - Toán lớp 7 - Học toán với OnlineMath
\(\frac{x}{5}=\frac{y}{1}=\frac{z}{-2}\)và x+y-2z=160
áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\frac{x}{5}=\frac{y}{1}=\frac{z}{-2}=\frac{x+y-2z}{5+1-2.\left(-2\right)}=\frac{160}{10}=16\)
<=>\(\hept{\begin{cases}x=16.5\\y=16.1\\z=16.\left(-2\right)\end{cases}}\)<=>\(\hept{\begin{cases}x=80\\y=16\\z=-32\end{cases}}\)
vậy (x,y,z)\(\in\)(80,16,-3)
Đặt x/5=y/1=z/-2=k
khi đó ta có : x=5k , y=k , z=-2k
Thay x=5k , y=k , z=-2k vào x+y-2z=160 ta có
5k + k-2(-2k)=160
5k+k+4k=160
k.(5+1+4)=160
k.10=160
k =160:10
k =16
suy ra x=5.k=5.16=80
y=k=16
z=-2k=-2.16=-32
Vậy x=(80,16,-32)
Tìm x;y;z biết:
\(\frac{x}{y}=\frac{5}{2};\frac{y}{z}=\frac{1}{3}\)và \(x^2-y^2+2z^2=372\)
\(\frac{x}{y}=\frac{5}{2}\Rightarrow\frac{x}{5}=\frac{y}{2}\)
\(\frac{y}{z}=\frac{1}{3}\Rightarrow y=\frac{z}{3}\Rightarrow\frac{y}{2}=\frac{z}{6}\)
\(\Rightarrow\frac{x}{5}=\frac{y}{2}=\frac{z}{6}\Rightarrow\frac{x^2}{25}=\frac{y^2}{4}=\frac{z^2}{36}=\frac{x^2-y^2+2z^2}{25-4+2.36}=\frac{372}{93}=4\)
\(\Rightarrow\hept{\begin{cases}x^2=4.25=100\\y^2=4.4=16\\z^2=4.36=144\end{cases}}\).Với x = 10 thì y=4,z=12
Với x=-10 thì y=-4 ,z = -12
Cách khác nè:
Ta có: \(\hept{\begin{cases}\frac{x}{y}=\frac{5}{2}\\\frac{y}{z}=\frac{1}{3}\end{cases}\Leftrightarrow}\frac{x}{5}=\frac{y}{2}=\frac{z}{6}\) (1)
Từ (1) suy ra: \(\frac{x^2}{25}=\frac{y^2}{4}=\frac{z^2}{36}=k\Leftrightarrow\hept{\begin{cases}x^2=25k\\y^2=4k\\z^2=36k\end{cases}}\) (2)
Thay vào,ta có:\(x^2-y^2+2z^2=372\)
\(\Leftrightarrow25k-4k+2.36k=372\)
\(\Leftrightarrow k\left(25-4+72\right)=372\)
\(\Leftrightarrow k=\frac{372}{93}=4\). Thay k vào (2),tính được: \(x^2,y^2,z^2\). Từ đó suy ra x, y, z
~ Học tốt ~
:v,chỗ (2) nhập z rồi mà olm méo hiện =,=....Làm mọi người hiểu nhầm ....=(((
Gõ lại từng cái cho chắc ăn ==: \(x^2=25k,y^2=4k,z^2=36k\) (2)
Tìm x,y,z biết
\(a.\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)và 2x+3y-z=186
\(b.\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
\(c.\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\)và 5x+y-2z=28
\(d.3x=2y;5x=5z,x-y+z=32\)
\(a.\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\) và \(2x+3y-z=186\)
Từ \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{3}\times\frac{1}{5}=\frac{y}{4}\times\frac{1}{5}=\frac{x}{15}=\frac{y}{20}\left(1\right)\)
Từ \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}\times\frac{1}{4}=\frac{z}{7}\times\frac{1}{4}=\frac{y}{20}=\frac{z}{28}\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=k\)
\(\Rightarrow\hept{\begin{cases}x=15k\\y=20k\\z=28k\end{cases}}\)
Lại có : \(2x+3y-z=186\)
Thay vào ta có :
\(2.15k+3.20k-28k=186\)
\(30k+60k-28k=186\)
\(62k=186\)
\(k=3\)
Thay vào ta được :
\(\Rightarrow\hept{\begin{cases}x=15.3=45\\y=20.3=60\\z=28.3=84\end{cases}}\)
Vậy .....
1) Tìm x, biết:
a) x:2=y:5 và x+y=21
b) x2=y2𝑥2=𝑦2và x.y=54
c) x:7=y:5 và y-x=12
2) Tím các số x, y, z, biết:
a) x10=y6=z21𝑥10=𝑦6=𝑧21và 5x+y-2z=28
b) x3=y4𝑥3=𝑦4; y5=z7𝑦5=𝑧7và 2x+3y-z=124
c) 3x=2y; 7y=5z và x-y+z=32
d) 2x=3x=5z và x+y-z=95
Để giải các bài toán này:
1a) \( \frac{x}{2} = \frac{y}{5} \) và \( x + y = 21 \)
Từ phương trình thứ nhất, ta có \( x = \frac{2y}{5} \). Thay vào phương trình thứ hai:
\[ \frac{2y}{5} + y = 21 \]
\[ \frac{7y}{5} = 21 \]
\[ 7y = 105 \]
\[ y = 15 \]
Thay \( y = 15 \) vào \( x + y = 21 \):
\[ x + 15 = 21 \]
\[ x = 6 \]
Vậy, \( x = 6 \).
1b) \( \frac{x^2}{2^2} = \frac{y^2}{2^2} \) và \( x \cdot y = 54 \)
Từ phương trình thứ nhất:
\[ x^2 = y^2 \]
Đặt \( x = y \) ta có:
\[ x^2 = 54 \]
\[ x = \sqrt{54} \]
\[ x = 3\sqrt{6} \]
Vậy, \( x = 3\sqrt{6} \).
1c) \( \frac{x}{7} = \frac{y}{5} \) và \( y - x = 12 \)
Từ phương trình thứ nhất, ta có \( x = \frac{7y}{5} \). Thay vào phương trình thứ hai:
\[ y - \frac{7y}{5} = 12 \]
\[ \frac{5y}{5} - \frac{7y}{5} = 12 \]
\[ \frac{-2y}{5} = 12 \]
\[ -2y = 60 \]
\[ y = -30 \]
Thay \( y = -30 \) vào \( y - x = 12 \):
\[ -30 - x = 12 \]
\[ x = -42 \]
Vậy, \( x = -42 \).
2a) \( \frac{x}{10} = \frac{y}{6} = \frac{z}{21} \) và \( 5x + y - 2z = 28 \)
Đặt \( k = \frac{x}{10} = \frac{y}{6} = \frac{z}{21} \), ta có:
\[ x = 10k, \quad y = 6k, \quad z = 21k \]
Thay vào phương trình \( 5x + y - 2z = 28 \):
\[ 5(10k) + 6k - 2(21k) = 28 \]
\[ 50k + 6k - 42k = 28 \]
\[ 14k = 28 \]
\[ k = 2 \]
\[ x = 10(2) = 20, \quad y = 6(2) = 12, \quad z = 21(2) = 42 \]
Vậy, \( x = 20, y = 12, z = 42 \).
2b) \( \frac{x}{3} = \frac{y}{4} \), \( \frac{y}{5} = \frac{z}{7} \), và \( 2x + 3y - z = 124 \)
Đặt \( k = \frac{x}{3} = \frac{y}{4} \), ta có:
\[ x = 3k, \quad y = 4k \]
Thay vào \( \frac{y}{5} = \frac{z}{7} \):
\[ \frac{4k}{5} = \frac{z}{7} \]
\[ z = \frac{28}{5}k \]
Thay \( x, y, z \) vào \( 2x + 3y - z = 124 \):
\[ 2(3k) + 3(4k) - \frac{28}{5}k = 124 \]
\[ 6k + 12k - \frac{28}{5}k = 124 \]
\[ \frac{30k + 60k - 28k}{5} = 124 \]
\[ \frac{62k}{5} = 124 \]
\[ 62k = 620 \]
\[ k = 10 \]
\[ x = 3(10) = 30, \quad y = 4(10) = 40, \quad z = \frac{28}{5}(10) = 56 \]
Vậy, \( x = 30, y = 40, z = 56 \).
2c) \( 3x = 2y \), \( 7y = 5z \), và \( x - y + z = 32 \)
Từ \( 3x = 2y \) và \( 7y = 5z \):
\[ x = \frac{2}{3}y, \quad z = \frac{7}{5}y \]
Thay vào \( x - y + z = 32 \):
\[ \frac{2}{3}y - y + \frac{7}{5}y = 32 \]
\[ \frac{10y - 15y + 21y}{15} = 32 \]
\[ \frac{16y}{15} = 32 \]
\[ y = 30 \]
\[ x = \frac{2}{3}(30) = 20, \quad z = \frac{7}{5}(30) = 42 \]
Vậy, \( x = 20, y = 30, z = 42 \).
2d) \( 2x = 3x = 5z \) và \( x + y - z = 95 \)
Từ \( 2x = 3x = 5z \), ta có:
\[ x = \frac{2}{3}x, \quad x = \frac{5}{3}z \]
Vậy, \( x = \frac{5}{3}z \).
Thay vào \( x + y - z = 95 \):
\[ \frac{5}{3}z + y - z = 95 \]
\[ \frac{2}{3}z + y = 95 \]
\[ y = 95 - \frac{2}{3}z \]
Thay \( x \) và \( y \) vào \( 2x = 3x = 5z \):
\[ 2(\frac{5}{3}z) = 3(\frac{5}{3}z) = 5z \]
\[ \frac{10}{3}z = 5z \]
\[ \frac{10}{3} = 5 \]
\[ \text{False} \]
Không có giải pháp thỏ