Những câu hỏi liên quan
TZ
Xem chi tiết
NT
18 tháng 3 2021 lúc 22:25

a) Ta có: \(\left(x-2\right)^2\ge0\forall x\)

nên Dấu '=' xảy ra khi x-2=0

hay x=2

Vậy: Gtnn của biểu thức \(\left(x-2\right)^2\) là 0 khi x=2

Bình luận (0)
EC
Xem chi tiết
PK
24 tháng 6 2018 lúc 16:58

1) \(A=\frac{2x+1}{x^2+2}\)

\(=\frac{\frac{1}{2}\left(x^2+4x+4\right)-\frac{1}{2}\left(x^2+2\right)}{x^2+2}\)

\(=\frac{\left(x+2\right)^2}{2\left(x^2+2\right)}-\frac{1}{2}\ge-\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

Vậy GTNN của \(A=-\frac{1}{2}\)khi x = -2 

Bình luận (0)
LT
Xem chi tiết
HY
9 tháng 7 2015 lúc 13:59

1) \(A=-\left(x^2-6x-1\right)=-\left(x^2-2.3x+9-10\right)\)

         \(=-\left(x-3\right)^2+10\)

         \(=10-\left(x-3\right)^2\le10\)  ( vì  \(\left(x-3\right)^2\ge0\) với mọi x)

Dấu "=" xảy ra \(\Leftrightarrow x=3\)

Vậy Max A = 10 tại x=3.

 

Bình luận (0)
H24
Xem chi tiết
NM
13 tháng 11 2021 lúc 15:23

\(A=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\\ A_{min}=4\Leftrightarrow x=1\\ B=2\left(x^2-3x\right)=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}\\ B=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\\ B_{min}=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\\ C=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\\ C_{max}=7\Leftrightarrow x=2\)

Bình luận (0)
H24
13 tháng 11 2021 lúc 15:24

a,\(A=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)

Dấu "=" \(\Leftrightarrow x=-1\)

b,\(B=2\left(x^2-3x\right)=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)

Dấu "=" \(\Leftrightarrow x=\dfrac{3}{2}\)

c,\(=C=-\left(x^2-4x-3\right)=-\left[\left(x^2-4x+4\right)-7\right]=-\left(x-2\right)^2+7\le7\)

Dấu "=" \(\Leftrightarrow x=2\)

Bình luận (0)
ND
6 tháng 1 lúc 13:45

um


Bình luận (0)
HC
Xem chi tiết
H24
22 tháng 6 2021 lúc 20:21

a) đk x khác 0;2

P =  \(\dfrac{1}{x\left(x-2\right)}.\left(\dfrac{x^2+4}{x}-4\right)+1\)

\(\dfrac{1}{x\left(x-2\right)}.\dfrac{x^2-4x+4}{x}+1\)

\(\dfrac{1}{x\left(x-2\right)}.\dfrac{\left(x-2\right)^2}{x}+1\)

\(\dfrac{x-2}{x^2}+1\)

\(\dfrac{x^2+x-2}{x^2}\)

b) Để \(\left|2+x\right|=1\)

<=> \(\left[{}\begin{matrix}2+x=1< =>x=-1\left(tm\right)\\2+x=-1< =>x=-3\left(tm\right)\end{matrix}\right.\)

TH1: x = -1

Thay x = -1 vào P, ta có:

\(P=\dfrac{\left(-1\right)^2-1-2}{\left(-1\right)^2}=-2\)

TH2: x = -3

Thay x = -3 vào P, ta có:

\(P=\dfrac{\left(-3\right)^2-3-2}{\left(-3\right)^2}=\dfrac{4}{9}\)

c) P = \(1+\dfrac{x-2}{x^2}\)

Xét \(\dfrac{x^2}{x-2}=\dfrac{\left(x-2\right)^2+4\left(x-2\right)+4}{x-2}\)

\(\left(x-2\right)+\dfrac{4}{x-2}+4\)

Áp dụng bdt co-si, ta có:

\(\left(x-2\right)+\dfrac{4}{x-2}\ge2\sqrt{\left(x-2\right)\dfrac{4}{x-2}}=4\)

<=> \(\dfrac{x^2}{x-2}\ge4+4=8\)

<=> \(\dfrac{x-2}{x^2}\le\dfrac{1}{8}\)

<=> A \(\le\dfrac{9}{8}\)

Dấu "=" <=> x = 4

Bình luận (0)
TM
Xem chi tiết
PA
4 tháng 4 2018 lúc 20:39

Để A có GTLN thì 3(2x-1)^2 nho nhất

mà 5-3(2x-1)^2 nên 3(2x-1)^2=0 ma x=1/2

với 3(2x-1)^2=3thi x=1

giá trị lớn nhất là 5-3(2x1-1)^2=2

Vay....

Bình luận (0)
H24
Xem chi tiết
NV
6 tháng 11 2016 lúc 20:50

bài 2

Ta có:

\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)

Trường hợp 1: \(x-102>0\Rightarrow x>102\)

\(2-x>0\Rightarrow x< 2\)

\(\Rightarrow102< x< 2\left(loại\right)\)

Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)

\(2-x< 0\Rightarrow x>2\)

\(\Rightarrow2< x< 102\left(nhận\right)\)

Vậy GTNN của A là -100 đạt được khi 2<x<102.

Bình luận (2)
VD
Xem chi tiết
HH
21 tháng 3 2020 lúc 20:31

Ta có

\(A=\frac{x^2+2x-1}{x^2-2x+3}\left(ĐKXĐ:\forall x\inℝ\right)\)

\(\Leftrightarrow A.\left(x^2-2x+3\right)=x^2+2x-1\)

\(\Leftrightarrow\left(A-1\right).x^2-2\left(A+1\right)x+3A+1=0\left(1\right)\)

Do \(\forall x\inℝ\)ta luôn có một giá trị A tương ứng nên phương trình (1) luôn có nghiệm

\(\Rightarrow\Delta^'_x\ge0\)

\(\Leftrightarrow\left(A+1\right)^2-\left(3A+1\right)\left(A-1\right)\ge0\)

\(\Leftrightarrow-2A^2+4A+2\ge0\)

\(\Leftrightarrow1-\sqrt{2}\le A\le1+\sqrt{2}\)

Nếu \(A=1-\sqrt{2}\)thì thay vào trên ta được \(x=1-\sqrt{2}\)

Nếu \(A=1+\sqrt{2}\)thì thay vào trên ta được 

Vậy \(\hept{\begin{cases}MinA=1-\sqrt{2}\Leftrightarrow x=1-\sqrt{2}\\MaxA=1+\sqrt{2}\Leftrightarrow x=1+\sqrt{2}\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
AA
Xem chi tiết