Những câu hỏi liên quan
H24
Xem chi tiết
HD
13 tháng 2 2022 lúc 18:12

i,<=>(2x - 1)(2x - 1 + 2 - x) = 0 <=> (2x - 1)(x + 1) = 0

<=> x = 1/2 hoặc x = -1

j,<=>(x - 1)(5x + 3) - (3x - 5)(x - 1) = 0

<=>(x - 1)(2x + 8) = 0 <=> x = 1 hoặc x = -4

k,<=>4(x + 5)(x - 6) = 0 <=> (x + 5)(x - 6) = 0

<=> x = -5 hoặc x = 6

m,<=>x^2(x + 1) + x + 1 = 0

<=>(x^2 + 1)(x + 1) = 0 (1)

Mà x^2 + 1 > 0 với mọi x nên (1) xảy ra <=> x + 1 = 0

<=> x = -1

Bình luận (0)
TP
Xem chi tiết
HN
22 tháng 7 2021 lúc 13:29

b) 5x(x-2000)-x+2000=0

\(\Rightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\\ \Rightarrow\left(x-2000\right)\left(5x-1\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-2000=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0+2000\\5x=0+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2000\\5x=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2000\\x=\dfrac{1}{5}\end{matrix}\right.\)

Bình luận (0)
TP
22 tháng 7 2021 lúc 14:46

Ai giúp minh làm bài 5 phía trên với

 

Bình luận (0)
NT
22 tháng 7 2021 lúc 23:15

c) Ta có: \(2x\left(x-2\right)+3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-3}{2}\end{matrix}\right.\)

d) Ta có: \(5x^2+x=0\)

\(\Leftrightarrow x\left(5x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-1}{5}\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
VP
28 tháng 2 2021 lúc 9:41

a. (3x - 1)2 - (x + 3)2 = 0

\(\Leftrightarrow\left(3x-1+x+3\right)\left(3x-1-x-3\right)=0\)

\(\Leftrightarrow\left(4x+2\right)\left(2x-4\right)=0\)

\(\Leftrightarrow4x+2=0\)  hoặc  \(2x-4=0\)

1. \(4x+2=0\Leftrightarrow4x=-2\Leftrightarrow x=-\dfrac{1}{2}\)

2. \(2x-4=0\Leftrightarrow2x=4\Leftrightarrow x=2\)

S=\(\left\{-\dfrac{1}{2};2\right\}\)

 

Bình luận (0)
VP
28 tháng 2 2021 lúc 9:47

b. \(x^3=\dfrac{x}{49}\)

\(\Leftrightarrow49x^3=x\)

\(\Leftrightarrow49x^3-x=0\)

\(\Leftrightarrow x\left(49x^2-1\right)=0\)

\(\Leftrightarrow x\left(7x+1\right)\left(7x-1\right)=0\)

\(\Leftrightarrow x=0\) hoặc  \(7x+1=0\) hoặc \(7x-1=0\)

1. x=0

2. \(7x+1=0\Leftrightarrow7x=-1\Leftrightarrow x=-\dfrac{1}{7}\)

3. \(7x-1=0\Leftrightarrow7x=1\Leftrightarrow x=\dfrac{1}{7}\)

Bình luận (0)
NT
28 tháng 2 2021 lúc 9:55

*Cách khác:

a) Ta có: \(\left(3x-1\right)^2-\left(x+3\right)^2=0\)

\(\Leftrightarrow\left(3x-1\right)^2=\left(x+3\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=-x-3\\3x-1=x+3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=-2\\2x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=2\end{matrix}\right.\)

Vậy: \(S=\left\{-\dfrac{1}{2};2\right\}\)

Bình luận (0)
PB
Xem chi tiết
CT
6 tháng 4 2017 lúc 2:49

(x – 1)(x2 + 3x – 2) – (x3 – 1) = 0

⇔ (x – 1)(x2 + 3x - 2) - (x - 1)(x2 + x + 1) = 0

⇔ (x – 1)[(x2 + 3x - 2) - (x2 + x + 1)] = 0

⇔ (x – 1). (x2 + 3x - 2 - x2 - x - 1) = 0

⇔ (x – 1)(2x - 3) = 0

⇔ x - 1 = 0 hoặc 2x - 3 = 0

+) Nếu x - 1 = 0 ⇔x = 1

+) Nếu 2x - 3 = 0 ⇔x = 3/2

Vậy tập nghiệm của phương trình là S = {1;3/2}

Bình luận (0)
PB
Xem chi tiết
CT
24 tháng 4 2017 lúc 13:43

Ta có:  x 3  – 5 x 2 –x +5 = 0 ⇔  x 2 ( x -5) – ( x -5) =0

⇔ (x -5)(x2 -1) =0 ⇔ (x -5)(x -1)(x +1) =0

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy phương trình đã cho có 3 nghiệm :x1 = 5;x2 =1;x3=-1

Bình luận (0)
PB
Xem chi tiết
CT
13 tháng 10 2017 lúc 12:27

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 1 2019 lúc 15:03

(x – 1)( x 2  + 5x – 2) – ( x 3  – 1) = 0

⇔ (x – 1)( x 2  + 5x – 2) – (x – 1)( x 2  + x + 1) = 0

⇔ (x – 1)[( x 2  + 5x – 2) – ( x 2 + x + 1)] = 0

⇔ (x – 1)( x 2  + 5x – 2 –  x 2  – x – 1) = 0

⇔ (x – 1)(4x – 3) = 0 ⇔ x – 1 = 0 hoặc 4x – 3 = 0

      x – 1 = 0 ⇔ x = 1

      4x – 3 = 0 ⇔ x = 0,75

Vậy phương trình có nghiệm x = 1 hoặc x = 0,75

Bình luận (0)
PB
Xem chi tiết
CT
14 tháng 8 2019 lúc 6:09

Bình luận (0)
HK
Xem chi tiết
NT
24 tháng 8 2023 lúc 10:20

b: 4(x+1)^2-9(x-1)^2=0

=>(2x+2)^2-(3x-3)^2=0

=>(2x+2-3x+3)(2x+2+3x-3)=0

=>(-x+5)(5x-1)=0

=>x=1/5 hoặc x=5

c: (x-1)^3+x^3+(x+1)^3=(x+2)^3

=>x^3-3x^2+3x-1+x^3+x^3+3x^2+3x+1=x^3+6x^2+12x+8

=>3x^3+6x-x^3-6x^2-12x-8=0

=>2x^3-6x^2-6x-8=0

=>x^3-3x^2-3x-4=0

=>x^3-4x^2+x^2-4x+x-4=0

=>(x-4)(x^2+x+1)=0

=>x-4=0

=>x=4

Bình luận (0)
PB
Xem chi tiết
CT
10 tháng 10 2019 lúc 4:31

a) Cách 1: Khai triển HĐT rút gọn được 3 x 2  + 6x + 7 = 0

Vì (3( x 2  + 2x + 1) + 4 < 0 với mọi x nên giải được  x ∈ ∅

Cách 2. Chuyển vế đưa về ( x   +   3 ) 3 =  ( x   - 1 ) 3  Û x + 3 = x - 1

Từ đó tìm được x ∈ ∅

b) Đặt  x 2  = t với t ≥ 0 ta được  t 2  + t - 2 = 0

Giải ra ta được t = 1 (TM) hoặc t = -2 (KTM)

Từ đó tìm được x = ± 1

c) Biến đổi được 

d) Biến đổi về dạng x(x - 2) (x - 4) = 0. Tìm được x{0; 2; 4}

Bình luận (0)