Những câu hỏi liên quan
PN
Xem chi tiết
SG
27 tháng 10 2016 lúc 13:03

Ta có:

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}\)

\(=\frac{\left(2x+3y-z\right)-5}{9}=\frac{50-5}{9}=\frac{45}{9}=5\)

\(\Rightarrow\begin{cases}x-1=2.5=10\\y-2=3.5=15\\z-3=4.5=20\end{cases}\)\(\Rightarrow\begin{cases}x=11\\y=17\\z=23\end{cases}\)

Vậy x = 11; y = 17; z = 23

Bình luận (1)
TT
Xem chi tiết
HT
7 tháng 9 2016 lúc 15:00

Từ \(5x=2y\)\(\Rightarrow\frac{x}{y}=\frac{2}{5}\)

Từ \(2x=3z\)\(\Rightarrow\frac{x}{z}=\frac{3}{2}\)

Từ \(xy=90\)\(\Rightarrow x=\frac{90}{y};y=\frac{90}{x}\)

Ta có: \(\frac{x}{y}=\frac{2}{5}\)

Mà \(x=\frac{90}{y}\)

Nên \(\frac{\frac{90}{y}}{y}=\frac{2}{5}\)\(\Leftrightarrow\frac{90}{y^2}=\frac{2}{5}\)\(\Leftrightarrow y=\pm15\)

*Khi \(y=15\) thì \(x=\frac{90}{15}=6\) và \(z=\frac{6.2}{3}=4\)

*Khi \(y=-15\) thì \(x=\frac{90}{-15}=-6\) và \(z=\frac{-6.2}{3}=-4\)

Vậy \(\left\{x;y;z\right\}\in\left\{\left(6;15;4\right),\left(-6;-15;-4\right)\right\}\)

Bình luận (12)
H24
Xem chi tiết
MP
Xem chi tiết
TL
Xem chi tiết
TL
1 tháng 8 2017 lúc 15:48

ai giúp hộ kìa

Bình luận (0)
DC
Xem chi tiết
NA
Xem chi tiết
PA
28 tháng 11 2016 lúc 21:31

để tui lm cho 

áp dụng đẳng thức \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

<=> \(1-3xyz=1\left(1-xy-yz-zx\right)\)

<=> \(3xyz=xy+yz+zx\)

mặt khác ta có 1=(x+y+z)^2=x^2+y^2+z^2+2xy+2yz+2zx

<=> 1=1+2(xy+yz+zx)

<=> xy+yz+zx=0 

<=> 3xyz=0 

<=> \(\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}}\)

đến đấy cậu tự lm nốt nhé 

Bình luận (0)
NA
28 tháng 11 2016 lúc 21:39

mà pn tuấn anh j ơi ,, bài này mk tìm đc 3 cặp nghiệm luôn á (x;y;z)=(0;0;1);(0;1;0);(1;0;0) 

pn giải cụ thể ra giúp mk vs

Bình luận (0)
PA
28 tháng 11 2016 lúc 22:01

cái ngoặc cuối là hoặc đó .. ko phải và đâu 

đến đó chia 3 th 

th1:x=0 ==> \(\hept{\begin{cases}y+z=1\\y^2+z^2=1\\y^3+z^3=1\end{cases}}\)==> y^2+2yz+z^2=1 <=> 2yz=0 <=> \(\orbr{\begin{cases}y=0\\z=0\end{cases}}\)==> \(\orbr{\begin{cases}z=1\\z=0\end{cases}}\)

do đó ta có cặp nghiệm (x;y;z) =(0;0;1) ;( 0;1;0 )

2th còn lại cậu lm tương tự 

Bình luận (0)
HG
Xem chi tiết
DB
25 tháng 9 2018 lúc 15:41

a,\(\frac{x}{4}=\frac{y}{2}=\frac{z}{3}\Leftrightarrow\frac{3x}{12}=\frac{2y}{4}=\frac{4z}{12}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{3x}{12}=\frac{2y}{4}=\frac{4z}{12}=\frac{3x-2y+4z}{12-4+12}=\frac{20}{20}=1\)

Suy ra:\(\hept{\begin{cases}\frac{x}{4}=1\\\frac{y}{2}=1\\\frac{z}{3}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=2\\z=3\end{cases}}\)

Bình luận (0)
DB
25 tháng 9 2018 lúc 15:44

b, Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{x}{2}=\frac{y}{6}=\frac{x-y}{2-6}=\frac{10}{-4}=-\frac{5}{2}\)

Suy ra:\(\hept{\begin{cases}\frac{x}{2}=-\frac{5}{2}\\\frac{y}{6}=-\frac{5}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-15\end{cases}}}\)

Bình luận (0)
DB
25 tháng 9 2018 lúc 15:46

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k;y=3k;z=4k\)

Do đó: \(xyz=2k.3k.4k=24\)

\(\Leftrightarrow24k=24\Rightarrow k=1\)

Từ k=1 ta tìm được x=2;y=3 và z=4

Bình luận (0)
HM
Xem chi tiết