Cho
\(\frac{3x-y}{x+y}=\frac{3}{4}\).Tính \(\frac{x}{y}\)
Cho \(\frac{3x-y}{x+y}=\frac{3}{4}.Tính\frac{x}{y}\)
\(\frac{3x-y}{x+y}=\frac{3}{4}\)
<=> (3x - y) . 4 = (x + y) . 3
<=> 12x - 4y = 3x + 3y
<=> 12x - 3x = 3y + 4y
<=> 9x = 7y
<=> \(\frac{x}{y}=\frac{7}{9}\)
\(\frac{3x-y}{x+y}=\frac{3}{4}\)
=>(3x-y).4=(x+y).3
=>12x-4y=3x+3y
=>12x-4x=3y+4y
=>8x=7y
=>\(\frac{x}{y}=\frac{7}{8}\)
Mình nhầm
\(\frac{x}{y}=\frac{7}{9}\)
Cho \(\frac{3x-y}{x+y}=\frac{3}{4}\)
Tính \(\frac{x}{y}\)
Ta có:\(\frac{3x-y}{x+y}=\frac{3}{4}\Rightarrow4\left(3x-y\right)=3\left(x+y\right)\)
\(\Rightarrow12x-4y=3x+3y\)
\(\Rightarrow12x-3x=3y+4y\)
\(\Rightarrow9x=7y\)
\(\Rightarrow\frac{x}{y}=\frac{7}{9}\)
Tìm x,y:
a/ cho \(\frac{x+4}{y+7}=\frac{4}{7}\)và x+y=22
b/ \(\frac{x}{3}=\frac{y}{4}\)và \(\frac{y}{3}=\frac{z}{6}\)tính \(M=\frac{2x+3y+4z}{3x+4y+5z}\)
tui lớp 5 giải dc phần a có cần tui giúp ko
bài 1
cho tỉ lệ thức :
\(\frac{3x-y}{x+y}=\frac{3}{4}\) .tính \(\frac{x}{y}\)
bài 2:
Tìm x trong tỉ lệ thức
\(\frac{3x+2}{5x+7}=\frac{3x+1}{5x+4}\)
bài 1
\(\frac{3x-y}{x+y}=\frac{3}{4}\)
\(\Rightarrow\left(3x-y\right).4=\left(x+y\right)3\)
\(\Rightarrow12x-4y=3x+3y\)
\(\Rightarrow9x=7y\)
\(\Rightarrow\frac{x}{y}=\frac{7}{9}\)
Vậy \(\frac{x}{y}=\frac{7}{9}\)
bài 2
\(\frac{3x+2}{5x+7}=\frac{3x-1}{5x+4}\)
\(\Rightarrow\) \(\left(3x+1\right)\left(5x+4\right)=\left(3x-1\right)\left(5x+7\right)\)
\(\Rightarrow15x^2+12x+10x+8=15x^2+21x-5x-7\)
\(\Rightarrow22x+8=16x-7\)
\(\Rightarrow22x+16x=-7-8\)
\(\Rightarrow6x=-15\)
\(\Rightarrow x=-2,5\)
Vậy x=-2,5
Tìm x, y biết:
a)\(\frac{x+4}{7+y}=\frac{4}{7}\)và \(x+y=22\)
b)\(Cho\frac{x}{3}=\frac{y}{4}\)và\(\frac{y}{5}=\frac{z}{6}\). Tính \(M=\frac{2x+3y+4z}{3x+4y+5z}\)
\(\frac{x+4}{7+y}\Rightarrow\frac{x+4}{4}=\frac{7+y}{7}\)
Áp dụng t/c dãy tỉ số = nhau ta được :
\(\frac{x+4}{4}=\frac{7+y}{7}=\frac{x+4+7+y}{4+7}=\frac{22+7+4}{4+7}=3\)
\(\Rightarrow\frac{x+4}{4}=3\Rightarrow x=5\)
\(\frac{7+y}{y}=3\Rightarrow y=14\)
Tìm x, y biết:
a, \(\frac{4+x}{7+y}=\frac{4}{7}\)và x + y = 22
b, Cho \(\frac{x}{3}=\frac{y}{4}\)và \(\frac{y}{5}=\frac{7}{6}\). Tính \(P=\frac{2x+3y+4z}{3x+4y+5z}\)
Ai nhanh và đúng tick nheeeeeeeeeeeeeeeeeeeeee
Vũ Tiến Sỹ
Đừng để bị phốt ạ
a.Ta có : \(\frac{4+x}{7+y}=\frac{4}{7}+\frac{x}{y}\Rightarrow\frac{y}{7}+\frac{x}{4}\) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{y}{7}+\frac{x}{4}=\frac{x+y}{4+7}=\frac{22}{11}=2\)
Suy ra:
\(\frac{x}{4}=2\Rightarrow x=4.2=8\)
\(\frac{y}{7}=2\Rightarrow y=7.2=14\)
Vậy x = 8; y = 14
\(Cho A=\frac{1}{(x+y)^3}(\frac{1}{x^4+y^4})\) ;\(B=\frac{2}{(x+y)^4}(\frac{1}{x^3}-\frac{1}{y^3})\) :C=\(\frac{2}{(x+y)^5}(\frac{1}{x^2}-\frac{1}{y^2})\) Tính A+B+C \)
Cho\(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{6}\).Tính \(M=\frac{2x+3y+4z}{3x+4y+5z}\)
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\left(1\right)\)
\(\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{y}{20}=\frac{z}{24}\left(2\right)\)
từ (1) và (2) => \(\frac{x}{15}=\frac{y}{20}=\frac{z}{24}\)
đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{24}=k\Rightarrow x=15k,y=20k,z=24k\)
thay x=15k, y=20k, z=24k vào M ta có:
\(M=\frac{2.15k+3.20k+4.24k}{3.15k+4.20k+5.24k}=\frac{30k+60k+96k}{45k+80k+120k}=\frac{186k}{245k}=\frac{186}{245}\)
vậy M=\(\frac{186}{245}\)
hệ phương trình
1, \(\left\{{}\begin{matrix}\frac{1}{x+y}+\frac{1}{x-y}=\frac{5}{8}\\\frac{1}{x+y}-\frac{1}{x-y}=-\frac{3}{8}\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}\frac{4}{2x-3y}+\frac{5}{3x+y}=2\\\frac{3}{3x+y}-\frac{5}{2x-3y}=21\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}\frac{7}{x-y+2}+\frac{5}{x+y-1}=\frac{9}{2}\\\frac{3}{x-y+2}+\frac{2}{x+y-1}=4\end{matrix}\right.\)
4, \(\left\{{}\begin{matrix}\frac{3}{x}+\frac{5}{y}=-\frac{3}{2}\\\frac{5}{x}-\frac{2}{y}=\frac{8}{3}\end{matrix}\right.\)
5 , \(\left\{{}\begin{matrix}\frac{2}{x+y-1}-\frac{4}{x-y+1}=-\frac{14}{5}\\\frac{3}{x+y-1}+\frac{2}{x-y+1}=-\frac{13}{5}\end{matrix}\right.\)
6 , \(\left\{{}\frac{\frac{2x-3}{2y-5}=\frac{3x+1}{3y-4}}{2\left(x-3\right)-3\left(y+20=-16\right)}}\)
7\(\left\{{}\begin{matrix}\left(x+3\right)\left(y+5\right)=\left(x+1\right)\left(y+8\right)\\\left(2x-3\right)\left(5y+7\right)=2\left(5x-6\right)\left(y+1\right)\end{matrix}\right.\)