1) \(Ch\text{ứng}t\text{ỏ}:\overline{ababab}chiah\text{ết}cho13v\text{à}7\)
1) \(Ch\text{ứng}t\text{ỏ}2^{2n}\left(2^{2n+3}-1\right)-1chiah\text{ết}cho5anhch\text{ị}n\text{ào}jupvs\)
Dài lắm bn ak,bạn vào google đăng cái này rồi tìm ra kết quả của Online Math nó có cái bài giống thế này chỉ khác 1 tẹo thôi.
Chứng tỏ :
A= \(\overline{abc}-\left(a+b+c\right)chiah\text{ết}cho9\)
\(A=\overline{abc}-\left(a+b+c\right)\\ =100a+10b_{ }+c-\left(a+b+c\right)\\ =99a+9b\)Vì 99 và 9 chia hết cho 9 nên 99a+99b chia hết cho 9 hay A chia hết cho 9
1) \(Cho2.\overline{xy}+1v\text{à}3.\overline{xy}+1l\text{à}S\text{ố}ch\text{ính}ph\text{ươ}ng.T\text{ìm}\overline{xy}\)
* 2xy + 1 =n2(1)
3xy+1=m2(2)
(1) => 2xy chia hết cho 8 => xy chia hết cho 4
(2)=>3xy chia hết cho 8 mà (3;8)=1 => xy chia hết cho 8
*(1)+(2)
=> 5xy +2=m2+n2
VP chia 5 dư 2 => m2+n2 chia 5 dư 2 => m2 và n2 chia 5 dư 1
=>xy chia hết cho 5
(8;5)=1
=>xy chia hết cho 40
1) Cho \(2.\overline{xy}+1v\text{à}3\overline{xy}+1l\text{à}c\text{ác}s\text{ố}ch\text{ính}ph\text{ươ}ng.T\text{ìm}\overline{xy}\)
*\(2\overline{xy}+1=n^2\left(1\right)\\ 3\overline{xy+1=m^2\left(2\right)\left(1\right)=>2\overline{xy}chia}h\text{ết}cho8=>\overline{xy}chiah\text{ết}cho4\\ \left(2\right)=>3\overline{xy}chiah\text{ết}cho8,\left(8;3\right)=1=>\overline{xy}chiah\text{ết}cho8\)
*\(\left(1\right)+\left(2\right)\\ =>5\overline{xy}+2=m^2+n^2\\ VPchia5d\text{ư}2=>m^2+n^2chia5d\text{ư}2=>m^2v\text{à}n^2chia5d\text{ư}1\\ =>\overline{xy}chiah\text{ết}cho5\\ \left(8;5\right)=1=>\overline{xy}\)
\(=>\overline{xy}chiah\text{ết}cho40\\ =>\overline{xy}\left(40;80\right)=>\overline{xy}=40\)
1)\(T\text{ìm}\overline{ab}bi\text{ết}:\overline{ab}^2=\left(a+b\right)^3\\ aigi\text{úp}v\text{ới}chu\text{ẩn}b\text{ị}\text{đ}ih\text{ọc}r\text{ồi}\)
1) \(T\text{ìm}:\overline{abc}bi\text{ết}:\frac{\overline{abc}}{1000}=\frac{1}{a+b+c}\)
Ai jup cái
\(T\text{ìm}\) \(s\text{ố}.nguy\text{ê}n.d\text{ư}\text{ơ}ng.nh\text{ỏ}.nh\text{ất}.th\text{ỏa}.m\text{ãn}:\frac{1}{2}s\text{ố}.\text{đ}\text{ó}.l\text{à}.s\text{ố}.ch\text{ính}.ph\text{ư}\text{ơ}ng\) \(\frac{1}{3}s\text{ố}.\text{đ}\text{ó}.l\text{à}.l\text{ập}.ph\text{ư}\text{ơ}ng.c\text{ủa}.1.s\text{ố}.nguy\text{ên}\) \(\)
\(\frac{1}{5}s\text{ố}.\text{đ}\text{ó}.l\text{à}.l\text{ũy}.th\text{ừa}.5.c\text{ủa}.1.s\text{ố.nguy\text{ê}n}\)
1) Tìm \(\overline{ab}bi\text{ết}:\overline{ab^2=\left(a+b\right)^3}\)
ai biết bài này chứng tỏ giỏi hơn mình
Chứng minh rằng :
\(A=1^3+2^3+3^3+.....+100^3\text{ }chia\text{ }h\text{ết }choB=1+2+3+.....+100\)
HELP ME !!! T^T
Âu Mai Gớt :)) Bài này là cả giờ sinh hoạt của t.
Đặt: \(L=1.2.3+2.3.4+100.101.102\)
\(4L=1.2.3.4+2.3.4.\left(5-1\right)+...+100.101.102.\left(103-99\right)\)
\(4L=1.2.3.4+2.3.4.5-1.2.3.4+...+100.101.102.103-99.100.101.102\)
\(4L=100.101.102.103\Leftrightarrow L=\dfrac{100.101.102.103}{4}\)(1)
Mặt khác( Kiểu người 2 mặt ý) :
\(L=\left(2-1\right).2.\left(2+1\right)+\left(3-1\right).3.\left(3+1\right)+...+\left(101-1\right).101.\left(101+1\right)\)
\(L=2\left(2^2-1\right)+3\left(3^2-1\right)+...+101\left(101^2-1\right)\)
\(L=2^3-2+3^3-3+...+101^3-101\)
\(L=\left(1^3+2^3+3^3+...+100^3\right)-\left(1+2+3+...+100\right)+101^3-101\)(2)
Từ (1) và (2) ta có: \(\left(1^3+2^3+3^3+...+100^3\right)-\left(1+2+3+...+100\right)+101^3-101=\dfrac{100.101.102.103}{4}\)
\(\Rightarrow A-\dfrac{100.101}{2}+101^3-101=25.101.102.103\)
\(\Rightarrow A=25.101.102.103+101-101^3+\dfrac{100.101}{2}\)
\(A=25502500\)
\(\)Mà: \(B=1+2+3+...+100=\dfrac{100.101}{2}=5050\)
\(\Rightarrow\dfrac{A}{B}=5050\Leftrightarrow A⋮B\)
ta có điều phải chứng minh.
P/S: Có thể nhận thấy rằng: \(A=B^2\).Công thức tổng quát:
\(1^3+2^3+...+l^3=\left(1+2+3+...+l\right)^2\)
B= 1+2+3+...+100=\(\dfrac{100\left(100+1\right)}{2}\)
=50 x 101
Ta lại có A =13+23+33+.....+1003
= (13+1003) + (23 + 993) + .....+ (503 +513)
vì\(\left\{{}\begin{matrix}\text{1^3+100^3⋮100+1=101}\\\text{2^3+99^3⋮2+99=101}\\............................\\\text{50^3+51^3⋮50+51=101}\end{matrix}\right.\)
=> A \(⋮\)101(1)
mặt khác
A = (13+993)+(23 + 983) + .....+ (493 +513)+(503 +1003)
vì\(\left\{{}\begin{matrix}1^3+99^3⋮1+99=100⋮50\\...................................\\49^3+51^3⋮49+51=100⋮50\\50^3+100^3⋮100+50=150⋮50\end{matrix}\right.\)
=> A\(⋮\)50(2)
Từ (1) và (2) => A\(⋮\)101 và\(⋮\)50
Mà (101 ,50)=1 => A\(⋮\)101x50=B
KL : A\(⋮\)B