Những câu hỏi liên quan
NT
Xem chi tiết
CH
30 tháng 7 2016 lúc 20:55

Ta có: \(384=2^7.3\)

Tích của 4 số chẵn liên tiếp sẽ có dạng : \(2^4.n.\left(n+1\right).\left(n+2\right).\left(n+3\right)\)

Ta cần chứng minh tích\(n\left(n+1\right).\left(n+2\right).\left(n+3\right)⋮2^3.3\) hay chia hết cho 8,3 ( vì 8, 3 là các số nguyên tố cùng nhau )

Bình luận (0)
NN
30 tháng 7 2016 lúc 20:54

Ta có : 384 = 27 . 3
Tích 4 số chẵn liên tiếp có dạng như sau 
24. n( n + 1 ) . ( n + 2 ) . ( n + 3) 
Ta cần chứng minh tích : n.( n + 1) . ( n + 2) . ( n + 3 ) chia hết cho 23 .3  hay chia hết cho 8 và cho 3 ( vì 8 và 3 là số nguyên tố cùng nhau )

 

Bình luận (0)
LH
30 tháng 7 2016 lúc 20:53

thật vậy xét tích của 4 số chẵn liên tiếp:(với m>2)
N= 2m.(2m+2)(2m+4)(2m+6) =16m(m+1)(m+2)(m+3)
xét C = m(m+1)(m+2)(m+3)
C chứa tích 3 số tự nhiên liên tiếp nên C chia hết cho 3.
C chứa tích 2 số chẵn liên tiếp nên C chia hết cho 8
8 và 3 nguyên tố cùng nhau => C chia hết cho 8.3=24
=> N chia hết cho 16.24= 384.
.

Bình luận (0)
H24
Xem chi tiết
DN
11 tháng 11 2018 lúc 20:59

1.

\(x\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\)

Tích 5 số tự nhiên liên tiếp sẽ chia hết cho 3,5

Ngoài ra trong 5 số này sẽ luôn tồn tại 2 ít nhất 2 số chẵn, trong đó có 1 số chia hết cho 4

Do đó tích 5 số tự nhiên liên tiếp luôn chia hết cho 2*3*4*5=120

2.(Tương tự)

3.Trong 3 số chẵn liên tiếp luôn tồn tại ít nhất 1 số chia hết cho 4 nên nó chia hết cho 2*2*4=16

Lại có trong 3 số chẵn liên tiếp luôn tồn tại 1 số chia hết cho 3(cái này viết số đó dưới dang \(x\left(x+2\right)\left(x+4\right)\)rồi xét 3 trường hợp với x=3k, x=3k+1 và x=3k+2)

Do đó tích 3 số chẵn liên tiếp chia hết cho 3*16=48.

4.

Trong 4 số chẵn liên tiếp luôn tồ tạ 1 số chia hết cho 4 và 1 số chia hết cho 8, dó đó tích này chia hết cho 2*2*4*8=128

Lại có trong 4 số chẵn liên tiếp tồn tại 1 số chia hết cho 3( làm như phần trên)

Do đó tích chia hết cho 3*128=384

5.

\(m^3-m=m\left(m-1\right)\left(m+1\right)\)

Đây là tích của 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3

Nên \(m^3-m\)chia hết cho 2*3=6

Bình luận (0)
BB
Xem chi tiết
LT
3 tháng 11 2015 lúc 20:13

a. Hai số chẵn liên tiếp có dạng là 2k và 2(k+1) với k là số nguyên .
Tích hai số này là 4k(k+1) . Ta có k(k+1) luôn chia hết cho 2 => 4k(k+1) luôn chia hết cho 8 => đpcm

b . Gọi ba số chẵn liên tiếp là 2a,2a + 2 , 2a + 4 ( a \(\in\) N ) Xét tích :
                2a.(2a + 2).(2a + 4) = 8a(a + 1)(a + 2)

  Chứng minh rằng a(a + 1)(a + 2) chia hết cho 3 và chia hết cho 2.
c. Ta có 384 = 2\(^7.3\)

Tích 4 số chẵn liên tiếp sẽ có dạng : \(2^4.n.\left(n+1\right).\left(n+2\right).\left(n+3\right)\)
Ta cần c/m tích \(n.\left(n+1\right).\left(n+2\right).\left(n+3\right)\) chia hết cho \(2^3.3\) hay chia hết cho 8 và cho 3( vì 8,3 là số nguyên tố cùng nhau)

L-I-K-E nha ! Mình đã bỏ thời gian ra giải cho bạn rồi đấy

Bình luận (0)
NT
3 tháng 11 2015 lúc 20:09

a. Gọi 2 số chẵn liên tiếp đó là 2a ; 2a + 2 
=> 2a.(2a+2)chia hết cho 2 (1)
2a. (2a+2) = 2a.2a + 2a .2 = 4.a.a+4.a=4.(a.a+a) 
=> 2a(2a+2) chia hết cho 4 (2)
từ (1) và (2)  2a.(2a+2) chia hết cho 8
Mấy bài kia tương tự

Bình luận (0)
TL
19 tháng 6 2017 lúc 9:36

b)Gọi tích của 3 số chẵn liên tiếp là: 2a,2a+2,2a+4. Ta thấy:

2a.(2a+2).(2a+4)=8a.(a+1).(a+2)

Nếu a là số chẵn thì a và a+2 chia hết cho 2

       a là số lẻ thì a+1 chia hết cho 2

=>a.(a+1).(a+2) chia hết cho 2

Nếu a chia 3 dư 1 thì a+2 chia hết cho 3

       a chia 3 dư 2 thì a+1 chia hết cho 3

=>a.(a+1).(a+2) chia hết cho 3

Từ các lập luận trên, ta được: a.(a+1).(a+2) chia hết cho 6

Vậy a.(a+1).(a+2) chia hết cho cả 8 và 6 => chia hết cho 48

Kết luận: 2a.(2a+2).(2a+4) chia hết cho 48

              => 3 số chẵn liên tiếp chia hết cho 48

k cho mình nha!!!!

Bình luận (0)
LL
Xem chi tiết
TL
7 tháng 11 2024 lúc 19:53

흘르럏스헣 허줖

Bình luận (0)
ND
Xem chi tiết
TV
12 tháng 7 2021 lúc 19:58

bạn hãy áp dụng công thức này mà làm: k.(k+1)....(k+n) luôn chia hết cho 1,2,...,n+1 biết k và n là số nguyên

gọi 2 số chẵn liên tiếp đó là: 2k,2k+2

2k.(2k+2)=4k(k+1) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2) chia hết cho 8

gọi 3 số chẵn liên tiếp đó là: 2k,2k+2,2k+4

2k.(2k+2)(2k+4)=8k(k+1)(k+2) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2)(2k+4) chia hết cho 16 (1)

k(k+1)(k+2) chia hết cho 3 suy ra 8k(k+1)(k+2) chia hết cho 3 suy ra 2k.(2k+2)(2k+4) chia hết cho 3 (2)

từ (1),(2) suy ra 2k.(2k+2)(2k+4) chia hết cho 48 do (16,3)=1

câu c, tương tự vậy

Bình luận (0)
 Khách vãng lai đã xóa
PM
13 tháng 10 2021 lúc 20:44

ASDWE RHTYJNHWSAVFGB

Bình luận (0)
 Khách vãng lai đã xóa
H24
7 tháng 12 2024 lúc 8:23

i

Bình luận (0)
HD
Xem chi tiết
CP
1 tháng 10 2015 lúc 8:00

Bn tham khảo ở ĐÂY

câu a) đấy

Bình luận (0)
NP
Xem chi tiết
DD
28 tháng 7 2016 lúc 21:24

4 số đó là 16;18;20 va 22 vi

16*18*20*22=126720:384=330.

Bình luận (0)
HE
Xem chi tiết
KA
18 tháng 6 2017 lúc 9:09

4 số chẵn tự nhiên liên tiếp luôn luôn tồn tại :

1 số chẵn chia hết cho 2

1 số chẵn chia hết cho 4

1 số chẵn chia hết cho 6

Và 1 số chia hết cho 8

Vậy tích của chúng luôn luôn chia hết cho 2.4.6.8 = 384

Bình luận (0)
H24
Xem chi tiết
ET
5 tháng 8 2017 lúc 19:30

Ta có :384 =\(2^7.3\)

Tích 4 số tự nhiên chăn có dạng:

\(2^4.n.\left(n+1\right).\left(n+2\right).\left(n+3\right)\)

Ta cần chứng minh tích n:

n.(n+1).(n+2).(n+3) chia hết cho \(2^3.3\)hay chia hết cho 8 và 3(vì 8 và 3 là hai số nguyên tố cùng nhau)

Bình luận (0)