Cho góc nhọn a
CMR: cos^4a-sin^4a=1-2sin^2a
C= sin^4a (3-2sin^2a) + cos^4a (3-2cos^2a)
Biết góc nhọn a.tính C
\(C=sin^4a\left(3-2sin^2a\right)+cos^4a\left(3-2cos^2a\right)\)
\(=sin^4a\left(1+2cos^2a\right)+cos^4a\left(1+2sin^2a\right)\)
\(=sin^4a+cos^4a+2sin^2a.cos^2a\left(sin^2a+cos^2a\right)\)
\(=sin^4a+cos^4a+2sin^2a.cos^2a=\left(sin^2a+cos^2a\right)^2=1\)
Chứng minh: ( cos a - cos 5a ):( sin 4a - sin 2a ) = 2sin a
Ai giúp mk tick cho
Đề của bạn bị sai đề đúng phải là sian 4a+sin 2a
Ta sẽ sử dụng công thức biến đổi tổng thành tích :(2sin2a sin3a) / (2sin3a cos2a) như vậy khi giải tiếp ra ta sẽ được 2sina
(cosa - cos5a):(sin4a - sin2a) không thể bằng 2sina
(cosa - cos5a):(sin4a + sin2a) mới bằng 2sina
Cho a là góc nhọn. Rút gọn biểu thức: A= sin^2a + cos^2a-3sinh^4a- 2 có ^2 a+ sin ^2a
\(sin^2a+cos^2a-sin^4a-2cos^2a+sin^2a\)
\(=2sin^2a-cos^2a-sin^4a\)
\(=2sin^2a-cos^2a-\left(\frac{1-cos2a}{2}\right)^2\)
khai triển ra rồi quy đồng lên
\(=\frac{8sin^2a-4cos^2a-1+2cos2a-cos^22a}{4}\)
Mà \(2cos2a=2\left(cos^2a-1\right)=4cos^2-2\)
\(\Rightarrow\frac{8sin^2a-cos^22a-3}{4}\)
Mà \(-cos^22a=sin^22a-1=4sin^2cos^2-1\)
\(\Rightarrow\frac{8sin^2a+4sin^2a.cos^2a-4}{4}\)
\(=\frac{4sin^2a.\left(2-cos^2a\right)-4}{4}\)
\(=sin^2a\left(1+sin^2a\right)-1\)
\(=sin^4a-cos^2a\)
viết lại đề đi cậu ơi
Tính \(sin^4a\left(3-2sin^2a\right)+cos^4a\left(3-2cos^2a\right)\)
tôi có lớp 6 thôi ạ cái này lớp 9 thì bó tay thôi
chị đã ghi rõ là toán lớp 9 mà em ko biết làm cũng phải thôi :))
Cho 0<a<90.CM các hệ sau
a)\(\frac{sin^2a-cos^2a+cos^4a}{cos^2a-sin^2a+sin^4a}=tan^4a\)
b)\(\frac{1-4sin^2a.cos^2a}{\left(sina+cosa\right)^2}=\left(sina-cosa\right)^2\)
Chứng minh (sin^2a-cos^2a+cos^4a) : (cos^2a-sin^2a+sin^4a) = tan^4a
1) Chứng minh :
a) \(\frac{1+\cot a}{1-\cot a}=\frac{\tan a+1}{\tan a-1}\)
b)\(\frac{\sin^2a-\cos^2a+\cos^4a}{\cos^2a-\sin^2a+sin^2a}=\tan^4a\)
2) Cho hình thang ABCD (AB//CD), góc C = 300 ; góc D = 600 ; AB = 1 ; CD = 5 . Tính diện tích hình thang ABCD
b,ta có :\(\frac{sin^2a-cos^2a\left(1-cos^2a\right)}{cos^2a-sin^2a\left(1-sin^2a\right)}=\frac{sin^4a}{cos^4a}\)
=>\(\frac{sin^2a-sin^2a.cos^2a}{cos^2a-sin^2a.cos^2a}=\frac{sin^4a}{cos^4a}\)
=>\(\frac{sin^2a\left(1-cos^2a\right)}{cos^2a\left(1-sin^2a\right)}=\frac{sin^4a}{cos^4a}\)
=>\(\frac{sin^4a}{cos^4a}=\frac{sin^4a}{cos^4a}\)luon dung => dpcm
CM các đẳng thức LG sau:
1)\(\left(cos^4a+sin^4a\right)-2\left(cos^6a+sin^6a\right)=1\)
2) \(\frac{sin^2a+cos^2a}{1+2sina.cosa}=\frac{tana-1}{tana+1}\)
3) \(sin^4a+cos^4a-sin^6a-cos^6a=sin^2a.cos^2a\)
4) \(\frac{cosa}{1+sina}+tana=\frac{1}{cosa}\)
5) \(\frac{tana}{a-tan^2a}.\frac{cot^2a-1}{cota}=1\)
cái câu 1 kia lạ thật, phần phía trc có ngoặc thì phải nhân vs hạng tử nào đó chứ nhỉ? Và mk tính ra kq là \(-\cos^22\alpha\)
\(VT=\cos^4\alpha+\sin^4\alpha-2\cos^6\alpha-2\sin^6\alpha\)
\(=\sin^4\alpha\left(1-2\sin^2\alpha\right)-\cos^4\alpha\left(2\cos^2\alpha-1\right)\)
\(=\sin^4\alpha.\cos2\alpha-\cos^4\alpha.\cos2\alpha\)
\(=\cos2\alpha\left(\sin^2\alpha.\sin^2\alpha-\cos^4\alpha\right)\)
\(=\cos2\alpha.\left[\left(1-\cos^2\alpha\right)^2-\cos^4\alpha\right]\)
\(=\cos2\alpha.\left(1-2\cos^2\alpha\right)\)
\(=-\cos^22\alpha\)
2/ \(VT=\frac{1-\cos^2\alpha+\cos^2\alpha}{1+\sin2\alpha}=\frac{1}{1+\sin2\alpha}\)
\(VP=\frac{\frac{\sin\alpha}{\cos\alpha}-1}{\frac{\sin\alpha}{\cos\alpha}+1}=\frac{\frac{\sin\alpha-\cos\alpha}{\cos\alpha}}{\frac{\sin\alpha+\cos\alpha}{\cos\alpha}}=\frac{\sin\alpha-\cos\alpha}{\sin\alpha+\cos\alpha}\)
hmm, câu 2 có vẻ vô lí, bn thử nhân chéo lên mà xem, nó ko ra KQ = nhau đâu
1)
\((\cos^4a+\sin ^4a)-2(\cos^6a+\sin ^6a)=(\cos ^4a+\sin ^4a)-2(\cos ^2a+\sin ^2a)(\cos ^4a-\cos ^2a\sin ^2a+\sin ^4a)\)
\(=(\cos ^4a+\sin ^4a)-2(\cos ^4a-\cos ^2a\sin ^2a+\sin ^4a)\)
\(=-(\cos ^4a-2\sin ^2a\cos ^2a+\sin ^4a)=-(\cos ^2a-\sin ^2a)^2=-\cos ^22a\)
(bạn xem lại đề. Nếu thay $(\cos ^4a+\sin ^4a)$ thành $3(\cos ^4a+\sin ^4a)$ thì kết quả thu được là $(\cos ^2a+\sin ^2a)^2=1$ như yêu cầu)
2) Sửa đề:
\(\frac{\sin ^2a-\cos ^2a}{1+2\sin a\cos a}=\frac{(\sin a-\cos a)(\sin a+\cos a)}{\sin ^2a+\cos ^2a+2\sin a\cos a}=\frac{(\sin a-\cos a)(\sin a+\cos a)}{(\sin a+\cos a)^2}\)
\(=\frac{\sin a-\cos a}{\sin a+\cos a}=\frac{\frac{\sin a}{\cos a}-1}{\frac{\sin a}{\cos a}+1}=\frac{\tan a-1}{\tan a+1}\)
Bạn lưu ý viết đề bài chuẩn hơn.
3)
\(\sin ^4a+\cos ^4a-\sin ^6a-\cos ^6a=\sin ^4a+\cos ^4a-[(\sin ^2a)^3+(\cos ^2a)^3]\)
\(=\sin ^4a+\cos ^4a-(\sin ^2a+\cos ^2a)(\sin ^4a-\sin ^2a\cos ^2a+\cos ^4a)\)
\(=\sin ^4a+\cos ^4a-(\sin ^4a-\sin ^2a\cos ^2a+\cos ^4a)\)
\(=\sin ^2a\cos ^2a\) (đpcm)
4)
\(\frac{\cos a}{1+\sin a}+\tan a=\frac{\cos a}{1+\sin a}+\frac{\sin a}{\cos a}=\frac{\cos ^2a+\sin^2a+\sin a}{\cos a(1+\sin a)}=\frac{1+\sin a}{\cos a(1+\sin a)}=\frac{1}{\cos a}\)
5)
\(\frac{\tan a}{1-\tan ^2a}.\frac{\cot ^2a-1}{\cot a}=\frac{\tan a}{(tan a\cot a)^2-\tan ^2a}.\frac{\cot ^2a-1}{\cot a}\)
\(=\frac{\tan a}{\tan ^2a(\cot ^2a-1)}.\frac{\cot ^2a-1}{\cot a}=\frac{1}{\tan a\cot a}=\frac{1}{1}=1\)
-----------------------------------
Mấu chốt của các bài này là bạn sử dụng 2 công thức sau:
1. \(\sin ^2x+\cos^2x=1\)
2. \(\tan x.\cot x=1\)
tính biểu thức y=\(\frac{cos^4a+sin^2a-cos^2a}{sin^4a+cos^2a-sin^2a}\)
\(y=\frac{\cos^4a+\sin^2a-\cos^2a}{\sin^4a+\cos^2a-\sin^2a}\)
\(\Leftrightarrow y=\frac{\cos^4a+\left(1-\cos^2a\right)-\cos^2a}{\left(\sin^2a\right)^2+\cos^2a-\sin^2a}\)
\(\Leftrightarrow y=\frac{\cos^4a+1-2\cos^2a}{\left(1-\cos^2a\right)^2+\cos^2a-\left(1-\cos^2a\right)}\)
\(\Leftrightarrow y=\frac{\left(1-\cos^2a\right)^2}{1-2\cos^2a+\cos^4a+2\cos^2a-1}\)
\(\Leftrightarrow y=\frac{\left(\sin^2a\right)^2}{\cos^4a}\)
\(\Leftrightarrow y=\frac{\sin^4a}{\cos^4a}\)
\(\Leftrightarrow y=\tan^4a\)
Vậy \(y=\tan^4a\)