chứng minh rằng:(n^n-1) chia hết cho 8
Với n là số tự nhiên lẻ bất kì
Chứng minh rằng:
(n^2 - 1) chia hết cho 8 với n là số tự nhiên lẻ bất kỳ
1)chứng minh rằng
a)ab(a+b)chia hết cho 2với a và b là 2 số tự nhiên bất kì
b)n2+n-1 không chia hết cho 2,với n là số tự nhiên
1/
Nếu $a,b$ cùng tính chất chẵn lẻ thì $a+b$ chẵn
$\Rightarrow ab(a+b)\vdots 2$
Nếu $a,b$ khác tính chất chẵn lẻ thì 1 trong 2 số $a,b$ là số chẵn
$\Rightarrow ab(a+b)\vdots 2$
Vậy tóm lại, $ab(a+b)\vdots 2$ với $a,b$ là số tự nhiên bất kỳ.
2/
$n^2+n-1=n(n+1)-1$
Vì $n,n+1$ là 2 số tự nhiên liên tiếp nên trong 2 số có 1 số chẵn, 1 số lẻ.
$\Rightarrow n(n+1)\vdots 2$
Mà $1\not\vdots 2$
$\Rightarrow n^2+n-1=n(n+1)-1\not\vdots 2$
1) Chứng minh rằng tổng n số tự nhiên liên tiếp chia hết cho n nếu n là số lẻ ?
2) Chứng minh tổng n số tự nhiên liên tiếp không chia hết cho n nếu n là số chẵn ?
Bài 1 :
Nếu n lẻ thì n + 1 chẵn do đó tổng n số tự nhiên liên tiếp là \(\frac{n.\left(n+1\right)}{2}\) là số chẵn nên không chia hết cho n vì n là số lẻ
Bài 2 :
Nếu n chẵn thì n + 1 lẻ do đó tổng n số tự nhiên liên tiếp là \(\frac{n.\left(n+1\right)}{2}\) là số chẵn nên chia hết cho n vì n là số chẵn
Cho n là số tự nhiên lẻ và n không chia hết cho 3. Chứng minh rằng (n+1)(n-1) chia hết cho 24
chứng minh rằng lập phương của một số tự nhiên n bất kì ( n thuộc N*) trừ đi bảy lần số đó luôn chia hết cho 6
ai cũng có thể giải đươc. Ai nhanh minh k
có : \(n^3-7n=n^3-n-6n=n\left(n-1\right)\left(n+1\right)-6n\) mà n,n-1,n+1 là 3 số tự nhiên liên tiếp nên tích của chúng chia hết cho 6 và 6n chia hết cho 6 nên ta có điều phải chứng minh.
1) Cho n là số tự nhiên lẻ. Chứng minh rằng :
24nn+1 chia hết cho 25 nhưng không chia hết cho 23
bài này có thểgiải thế này nè.
xét n chẵn, ta có n^2 +1 là số lẻ --> k chia hết cho 8 với mọi n chẵn.
xét n lẻ, ta có n có thể đc viết dưới dạng, n=2k + 1 (k thuộc N)
các số chia hết cho 8 có dạng 8k',
ta xét 2 đồ thị y = (2x+1)^2 + 1 và y = 8x, xét pt hoành độ giao điểm (2x +1)^2 + 1 = 8x ta được pt vô nghiệm, từ đó suy ra không tìm được k để n^2 + 1 chia hết cho 8.
vậy thì n^+1 k chia hết cho 8 với n chẳn và lẻ, vậy nên cúi cùng nó k chia hết cho 8
\(\left(n^2-1\right)=\left(n-1\right)\left(n+1\right)\)
Vì \(n\) lẻ \(\Rightarrow n+1\) và \(n-1\) chẵn
\(n+1-\left(n-1\right)=n+1-n+1=2\)
\(\Rightarrow n+1\) và \(n-1\) là hai số chẵn liên tiếp
\(\Rightarrow\left\{{}\begin{matrix}n-1=2k\\n+1=2\left(k+1\right)\end{matrix}\right.\left(k\in N\right)\)
\(k+1-k=1\)
\(\Rightarrow k\) và \(k+1\) là hai số tự nhiên liên tiếp nên trong hai số \(k\) và \(k+1\) có một số chẵn
Nếu \(k\) là số chẵn:
\(\Rightarrow k=2a\left(a\in N\right)\\ \left\{{}\begin{matrix}n-1=2k=2\cdot2a=4a\\n+1=2\left(k+1\right)\end{matrix}\right.\Rightarrow\left(n-1\right)\left(n+1\right)=4a\cdot2\left(k+1\right)=8a\left(k+1\right)⋮8\)
Nếu \(k\) là số lẻ:
\(\Rightarrow k+1\) là số chẵn
\(\Rightarrow k+1=2b\left(b\in N\right)\\ \left\{{}\begin{matrix}n-1=2k\\n+1=2\left(k+1\right)=2\cdot2b=4b\end{matrix}\right.\Rightarrow\left(n-1\right)\left(n+1\right)=2k\cdot4b=8kb⋮8\)
Vậy \(\left(n^2-1\right)⋮8\left(đpcm\right)\)
bài này có thểgiải thế này nè.
xét n chẵn, ta có n^2 +1 là số lẻ --> k chia hết cho 8 với mọi n chẵn.
xét n lẻ, ta có n có thể đc viết dưới dạng, n=2k + 1 (k thuộc N)
các số chia hết cho 8 có dạng 8k',
ta xét 2 đồ thị y = (2x+1)^2 + 1 và y = 8x, xét pt hoành độ giao điểm (2x +1)^2 + 1 = 8x ta được pt vô nghiệm, từ đó suy ra không tìm được k để n^2 + 1 chia hết cho 8.
vậy thì n^+1 k chia hết cho 8 với n chẳn và lẻ, vậy nên cúi cùng nó k chia hết cho 8
xét n chẵn, ta có n^2 +1 là số lẻ --> k chia hết cho 8 với mọi n chẵn.
xét n lẻ, ta có n có thể đc viết dưới dạng, n=2k + 1 (k thuộc N)
các số chia hết cho 8 có dạng 8k',
ta xét 2 đồ thị y = (2x+1)^2 + 1 và y = 8x, xét pt hoành độ giao điểm (2x +1)^2 + 1 = 8x ta được pt vô nghiệm, từ đó suy ra không tìm được k để n^2 + 1 chia hết cho 8.
vậy thì n^+1 k chia hết cho 8 với n chẳn và lẻ, vậy nên cúi cùng nó k chia hết cho 8 :3 bài này có thểgiải thế này nè.
xét n chẵn, ta có n^2 +1 là số lẻ --> k chia hết cho 8 với mọi n chẵn.
xét n lẻ, ta có n có thể đc viết dưới dạng, n=2k + 1 (k thuộc N)
các số chia hết cho 8 có dạng 8k',
ta xét 2 đồ thị y = (2x+1)^2 + 1 và y = 8x, xét pt hoành độ giao điểm (2x +1)^2 + 1 = 8x ta được pt vô nghiệm, từ đó suy ra không tìm được k để n^2 + 1 chia hết cho 8.
vậy thì n^+1 k chia hết cho 8 với n chẳn và lẻ, vậy nên cúi cùng nó k chia hết cho 8 :3 bài này có thểgiải thế này nè.
xét n chẵn, ta có n^2 +1 là số lẻ --> k chia hết cho 8 với mọi n chẵn.
xét n lẻ, ta có n có thể đc viết dưới dạng, n=2k + 1 (k thuộc N)
các số chia hết cho 8 có dạng 8k',
ta xét 2 đồ thị y = (2x+1)^2 + 1 và y = 8x, xét pt hoành độ giao điểm (2x +1)^2 + 1 = 8x ta được pt vô nghiệm, từ đó suy ra không tìm được k để n^2 + 1 chia hết cho 8.
vậy thì n^+1 k chia hết cho 8 với n chẳn và lẻ, vậy nên cúi cùng nó k chia hết cho 8
Chứng minh rằng trong 2013 số tự nhiên n1,n2,....n2013 bất kì luôn tồn tại 1 số chia hết cho 2013 hoặc hữu hạn số khác nhau trong 2013 số có tổng chia hết cho 2013
chứng minh rằng tổng của n số s tự nhiên chia hết cho n nếu n là số lẻ và không chia hết cho n nếu n là số chẵn