Những câu hỏi liên quan
LQ
Xem chi tiết
ND
20 tháng 9 2023 lúc 20:58

a) Xét hiệu : \(n^5-n\)

Đặt : \(A\text{=}n^5-n\)

Ta có : \(A\text{=}n.\left(n^4-1\right)\text{=}n.\left(n^2-1\right)\left(n^2+1\right)\)

\(A\text{=}n.\left(n+1\right).\left(n-1\right).\left(n^2+1\right)\)

Vì : \(n.\left(n+1\right)\) là tích hai số tự nhiên liên tiếp .

\(\Rightarrow A⋮2\)

Ta có : \(A\text{=}n\left(n+1\right)\left(n-1\right)\left(n^2+1\right)\)

\(A\text{=}n\left(n+1\right)\left(n-1\right)\left(n^2-4+5\right)\)

\(A\text{=}n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n.\left(n+1\right)\left(n-1\right)\)

Ta thấy : \(\left\{{}\begin{matrix}n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮5\\5n\left(n-1\right)\left(n+1\right)⋮5\end{matrix}\right.\) vì tích ở trên là tích của 5 số liên tiếp nên chia hết cho 5.

Do đó : \(A⋮10\)

\(\Rightarrow A\) có chữ số tận cùng là 0.

Suy ra : đpcm.

b) Vì \(n⋮3̸\) nên n có dạng : \(3k+1hoặc3k+2\left(k\in N\right)\)

Với : n= 3k+1

Thì : \(n^2\text{=}9k^2+6k+1\)

Do đó : \(n^2\) chia 3 dư 1.

Với : n=3k+2

Thì : \(n^2\text{=}9k^2+12k+4\text{=}9k^2+12k+3+1\)

Do đó : \(n^2\) chia 3 dư 1.

Suy ra : đpcm.

Bình luận (0)
NP
Xem chi tiết
NT
Xem chi tiết
NM
Xem chi tiết
H24
19 tháng 8 2018 lúc 20:44

Nếu n và n5 có chữ số tận cùng giống nhau

\(\Rightarrow n^5-n⋮10\)

Ta có:

\(n^5-n\)

\(=n\left(n^4-1\right)\)

\(=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4\right)+5n\left(n-1\right)\left(n+1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)

\(n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\) là tích của 5 số tự nhiên liên tiếp

\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮5\)

\(n\left(n-1\right)\) là tích của hai số tự nhiên liên tiếp

\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮2\)

\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮10\left(1\right)\)

Ta có: \(5n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮5\)

\(n\left(n-1\right)\) là tích của hai số tự nhiên liên tiếp

\(\Rightarrow5n\left(n-1\right)\left(n+1\right)⋮2\)

\(\Rightarrow5n\left(n-1\right)\left(n+1\right)⋮10\left(2\right)\)

Từ (1) và (2) suy ra

\(n\left(n+1\right)\left(n-1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)⋮10\)

\(\Rightarrow n^5-n⋮10\)

Vậy n và n5 có chữ số tận cùng giống nhau

Bình luận (0)
DD
Xem chi tiết
AN
17 tháng 9 2018 lúc 15:30

\(n^5-n=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5\left(n-1\right)n\left(n+1\right)⋮10\)

\(\Rightarrow n^5,n\) co chữ xô tận cùng giông nhau

Bình luận (0)
PA
Xem chi tiết
TH
27 tháng 11 2015 lúc 20:33

 A = n^5 - n = n(n^4-1) = n(n^2 +1)(n^2 -1) =n(n^2 +1)(n+1)(n-1) 
* n(n +1) chia hết cho 2 => A chia hết cho 2. 

*cm: A chia hết cho 5. 
n chia hết cho 5 => A chia hết cho 5. 
n không chia hết cho 5 => n = 5k + r (với r =1,2,3,4) 
- r = 1 => n - 1 = 5k chia hết cho 5 => A chia hết cho 5 
- r = 2 => n^2 + 1 = 25k^2 + 20k + 5 chia hết cho 5 => A chia hết cho 5 
- r = 3 => n^2 + 1 = 25k^2 + 30k + 10 chia hết cho 5 => A chia hết cho 5 
- r = 4 => n +1 = 5k + 5 chia hết cho 5 => A chia hết cho 5 
=> A luôn chia hết cho 5 
2,5 nguyên tố cùng nhau => A chia hết cho 2.5=10 => A tận cùng là 0 
=> đpcm

Bình luận (0)
NS
27 tháng 11 2015 lúc 20:35

Nói trước mình copy
n^5-n=n(n^4-1)=n(n²-1)(n²-4+5) 
=(n-2)(n-1)n(n+1)(n+2)+5(n-1)n(n+1) (a) 
*Vì (n-2)(n-1)n(n+1)(n+2) là tíc 5 số tự nhiên ltiếp nên chia hết cho 2,5 nên chia hết cho 10 
( vì (2,5)=1) (b) 
*Vì (n-1)n(n+1) là tích 3 số nguyên ltiếp nên chia hết cho 2 =>5(n-1)n(n+1) chia hết cho 10 (c) 
Từ (a),(b),(c)=>n^5-n chia hết cho 10 nên n^5 và n có cùng dư khi chia cho 10 
Đặt dư là r(r thuộc N,0≤r≤9) ta có:n^5=10k+r,n=10h+r đều có tận cùng là r (đpcm) 

Bình luận (0)
VQ
27 tháng 11 2015 lúc 20:37

A = n^5 ‐ n = n﴾n^4‐1﴿ = n﴾n^2 +1﴿﴾n^2 ‐1﴿ =n﴾n^2 +1﴿﴾n+1﴿﴾n‐1﴿

* n﴾n +1﴿ chia hết cho 2 => A chia hết cho 2.

*cm: A chia hết cho 5. n chia hết cho 5 => A chia hết cho 5.

n không chia hết cho 5 => n = 5k + r ﴾với r =1,2,3,4﴿

‐ r = 1 => n ‐ 1 = 5k chia hết cho 5 => A chia hết cho 5

‐ r = 2 => n^2 + 1 = 25k^2 + 20k + 5 chia hết cho 5 => A chia hết cho 5

‐ r = 3 => n^2 + 1 = 25k^2 + 30k + 10 chia hết cho 5 => A chia hết cho 5

‐ r = 4 => n +1 = 5k + 5 chia hết cho 5

=> A chia hết cho 5

=> A luôn chia hết cho 5

2,5 nguyên tố cùng nhau

=> A chia hết cho 2.5=10

=> A tận cùng là 0

mà A=n^5-n

nên n^5 và n phải có chữ số tận cùng giống nhau

=>dpcm

Bình luận (0)
BT
Xem chi tiết
DT
6 tháng 7 2015 lúc 17:02

Lay 4 chu so thi dong du voi 10000  

5^1994=5^2*(5^4)^498  

5^4=625 dong du 625 mod 10000  

625^2=390625 dong du 625 mod 10000  

=>625^n luon dong du 625 mod 10000  

=>(5^4)^498 dong du 625 mod 10000  

=>(5^2)*(5^4)^498 dong du (5^2)*625 mod 10000  

hay la 5^1994 dong du 15625 mod 10000

 Vay 4 chu so tan cung cua 5^1994 la 5625 

​kết luận chữ số tận cũg có 4 chữ số

Bình luận (0)
NV
25 tháng 12 2017 lúc 19:32

ngu tất

Bình luận (0)
NV
25 tháng 12 2017 lúc 19:33

làm cách khác đi

Bình luận (0)
TH
Xem chi tiết
LH
5 tháng 10 2016 lúc 19:41

Coi chữ số tận cùng của n là h

Với n lẻ :

\(n^5=n^4.n=\left(...1\right).n=\left(..1\right)\left(...a\right)=\left(...a\right)\)

Tương tự với n chẵn :

\(n^5=n^4.n=\left(...6\right).n=\left(..6\right)\left(...a\right)=\left(...a\right)\)

Vậy ...

Bình luận (0)
H24
8 tháng 2 2017 lúc 13:19

Không hiểu nổi @trần thùy dung CTV viết cái gì nữa:

\(A=n^5-n\)

 A chia hết cho 5 với mọi n thuộc N (*)

\(A=n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)=> A chia hết cho 2 (**)

(*)&(**)=> A chia hết cho 10=> A tận cùng là 0 vậy n^5 và n có số tận cùng = nhau=> dpcm

p/s: (*) nếu cần có thể c/m nhưng nó thuộc t/c do vậy ko cần c/m nữa

Bình luận (0)
AN
8 tháng 2 2017 lúc 17:41

Ta có:

n5 - n = n(n4 - 1)

= n(n2 - 1)(n2 - 4 + 5)

= n(n2 - 1)(n2 - 4) + 5n(n2 - 1)

= (n - 2)(n - 1)n(n + 1)(n + 2) + 5(n - 1)n(n + 1)

Ta thấy (n - 2)(n - 1)n(n + 1)(n + 2) là 5 số tự nhiên liên tiếp nên sẽ đồng thời chia hết cho 2 và cho 5. Hay là (n - 2)(n - 1)n(n + 1)(n + 2) sẽ chia hết cho 10 (1)

Ta lại co (n - 1)n(n + 1) là 3 số tự nhiên liên tiếp nên sẽ chia hết cho 2

=> 5(n - 1)n(n + 1) chia hết cho 10 (2)

Từ (1) và (2) => n5 - n chia hết cho 10 hay là co tận cùng là 0.

Vậy n5 và n luôn có chữ số tận cùng giống nhau.

Bình luận (0)
HA
Xem chi tiết