Tính
\(S=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)
1, Tính \(\frac{1}{2}-\left(\frac{1}{3}+\frac{2}{3}\right)+\left(\frac{1}{4}+\frac{2}{4}+\frac{3}{4}\right)-\left(\frac{1}{5}+\frac{2}{5}+\frac{3}{5}+\frac{4}{5}\right)+...+\left(\frac{1}{100}+\frac{2}{100}+\frac{3}{100}+...+\frac{99}{100}\right)\)2,Tính \(\left(1-\frac{1}{2^2}\right)x\left(1-\frac{1}{3^2}\right)x\left(1-\frac{1}{4^2}\right)x...x\left(1-\frac{1}{n^2}\right)\)
Tính :
\(\left[\frac{1}{100}-1^2\right].\left[\frac{1}{100}-\left(\frac{1}{2}\right)^2\right].\left[\frac{1}{100}-\left(\frac{1}{3}\right)^2\right]...\left[\frac{1}{100}-\left(\frac{1}{20}\right)^2\right]\)
Tính:
\(\left[\frac{1}{100}-1^2\right].\left[\frac{1}{100}-\left(\frac{1}{2}\right)^2\right].\left[\frac{1}{100}-\left(\frac{1}{3}\right)^2\right].....\left[\frac{1}{100}-\left(\frac{1}{20}\right)^2\right]\)
Xét : \(\frac{1}{100}-\frac{1}{n^2}=\frac{n^2-100}{100n^2}=\frac{\left(n-10\right)\left(n+10\right)}{100n^2}\)
Áp dụng , đặt biểu thức cần tính là A , ta có :
\(A=\left(\frac{1}{100}-\frac{1}{1^2}\right)\left(\frac{1}{100}-\frac{1}{2^2}\right)\left(\frac{1}{100}-\frac{1}{3^2}\right)...\left(\frac{1}{100}-\frac{1}{20^2}\right)\)
\(=\frac{\left(1-10\right)\left(1+10\right)}{100.1^2}.\frac{\left(2-10\right)\left(2+10\right)}{100.2^2}.\frac{\left(3-10\right)\left(3+10\right)}{100.3^2}...\frac{\left(10-10\right)\left(10+10\right)}{100.10^2}...\frac{\left(20-10\right)\left(20+10\right)}{100.20^2}\)
Nhận thấy trong A có một nhân tử (10-10) = 0 nên A = 0
làm thế thì hơi dài đấy Hoàng Lê Bảo Ngọc
ta nhận thấy trong biểu thức chứa thừa số \(\frac{1}{100}-\left(\frac{1}{10}\right)^2=\frac{1}{100}-\frac{1}{100}=0\)
=>biểu thức ấy =0
Nguyễn Thiều Công Thành Ừ , tại mình quên không để ý :)
Tính S=\(1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)+...+\frac{1}{100}\left(1+2+3+...+100\right)\)
Tính S ?
Bài 1. Tính S=\(\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right).....\left(1-\frac{1}{100^2}\right)\)
\(S=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)......\left(1-\frac{1}{100^2}\right)\)
\(=\frac{3}{4}.\frac{8}{9}.....\frac{9999}{10000}\)
\(=\frac{\left(1.3\right).\left(2.4\right).........\left(99.101\right)}{\left(2.2\right).\left(3.3\right).......\left(100.100\right)}\)
\(=\frac{\left(1.2....99\right)\left(3.4....101\right)}{\left(2.3.....100\right)\left(2.3....100\right)}\)
\(=\frac{1.101}{100.2}=\frac{101}{200}\)
Tính giá trị của biểu thức :
S=\(1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)+.....+\frac{1}{100}.\left(1+2+...+100\right)\)
Ta được S={..}
\(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+.....+\frac{1}{100}\left(1+2+3+....+100\right)\)
\(=1+\frac{1}{2}.\frac{2\left(2+1\right)}{2}+\frac{1}{3}.\frac{3\left(3+1\right)}{2}+\frac{1}{4}.\frac{4\left(4+1\right)}{2}+.....+\frac{1}{100}.\frac{100\left(100+1\right)}{2}\)
\(=1+\frac{2+1}{2}+\frac{3+1}{2}+....+\frac{100+1}{2}\)
\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+....+\frac{101}{2}\)
\(=\frac{2+3+4+....+101}{2}\)
\(=\frac{\frac{101\left(101+1\right)}{2}-1}{2}=5150.5\)
Tính:
\(\left[\frac{1}{100}-1^2\right].\left[\frac{1}{100}-\left(\frac{1}{2}\right)^2\right].\left[\frac{1}{100}-\left(\frac{1}{3}\right)^2\right].....\left[\frac{1}{100}-\left(\frac{1}{20}\right)^2\right]\)
Giải nhanh lên giúp mk với! Rồi mk tick cho 3 cái
đây có chắc là toán lớp 7 không đấy
nếu có bài hình nào khó thì cho lên đấy nhé mình chuyên về toán lớp 7 hơn
Tính giá trị của biểu thức:
\(s=1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)+....+\frac{1}{100}\left(1+2+3+...+100\right)\)
ta được S={ }
\(S=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+....+\frac{1}{100}\left(1+2+3+....+100\right)\)
\(=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+.....+\frac{1}{100}.\frac{100.101}{2}\)
\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+.....+\frac{101}{2}\)
\(=\frac{2+3+4+....+101}{2}\)
\(=\frac{\frac{101.102}{2}-1}{2}\)
\(=2575\)
Vậy \(S=2575\)
tính :
a)\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{100}\right)\)
b) B=\(\left(1-\frac{1}{^{2^2}}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{100^2}\right)\)
a/ \(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{100}\right)=\frac{3}{2}\times\frac{4}{3}\times....\times\frac{101}{100}=\frac{101}{2}\)
b/ Tự chép đề nha\(B=\left(1-\frac{1}{2}\right)\left(1+\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1+\frac{1}{3}\right)....\left(1-\frac{1}{100}\right)\left(1+\frac{1}{100}\right)\)
\(=\frac{1}{2}\times\frac{3}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{99}{100}\times\frac{101}{100}=\frac{1}{2}\times\frac{101}{100}=\frac{101}{200}\)
Đề a) (1+1/2) (1+1/3) (1+1/4)...(1+1/100)
\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)....\left(1+\frac{1}{100}\right)\)
\(=\frac{3}{2}.\frac{4}{3}....\frac{101}{100}=\frac{3.4...101}{2.3...100}=\frac{101}{2}\)
Học tốt