Những câu hỏi liên quan
CO
Xem chi tiết
MT
21 tháng 6 2015 lúc 20:06

O x z y u v

* Gọi góc xOz, góc zOy là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy. 
* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov. 
* Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy 
nên: 
{ góc uOz = 1/2 góc xOz 
{ góc zOv = 1/2 góc zOy 
Suy ra: 
{ 2 góc uOz = góc xOz 
{ 2 góc zOv = góc zOy 
Ta lại có: 
góc xOz + góc zOy = 180 độ (vì 2 góc xOz, góc zOy kề bù) 
=> 2 góc uOz + 2 góc zOv = 180 độ 
=> 2(góc uOz + góc zOv) = 180 độ 
=> góc uOz + góc zOv = 90 độ 
=> góc uOv = 90 độ (vì 2 góc uOz, góc zOv kề nhau) 
=> Tia Ou vuông góc Tia Ov 
Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau.

Bình luận (0)
TH
Xem chi tiết
IM
1 tháng 10 2016 lúc 19:42

x y z O m n

Cho \(\widehat{xOy};\widehat{yOz}\) là 2 góc kề bù

\(\Rightarrow\widehat{xOy}+\widehat{yOz}=180^0\)

Gọi Om ; On lần lượt là tia phân giác của 2 goc đó

\(\Rightarrow\begin{cases}\widehat{mOy}=\frac{1}{2}.\widehat{xOy}\\\widehat{nOy}=\frac{1}{2}.\widehat{yOz}\end{cases}\)

\(\Rightarrow\widehat{mOy}+\widehat{nOy}=\frac{\widehat{xOy}+\widehat{yOx}}{2}\)

\(\Rightarrow\widehat{mOn}=\frac{180^0}{2}\)

\(\Rightarrow\widehat{mOn}=90^0\)

=> đpcm

Bình luận (0)
NT
1 tháng 10 2016 lúc 19:38

Ta có : 

 Gọi góc xOz, góc zOy là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy. 
* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov. 
* Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy 
nên: 
{ góc uOz = 1/2 góc xOz 
{ góc zOv = 1/2 góc zOy 
Suy ra: 
{ 2 góc uOz = góc xOz 
{ 2 góc zOv = góc zOy 
Ta lại có: 
góc xOz + góc zOy = 180 độ (vì 2 góc xOz, góc zOy kề bù) 
=> 2 góc uOz + 2 góc zOv = 180 độ 
=> 2(góc uOz + góc zOv) = 180 độ 
=> góc uOz + góc zOv = 90 độ 
=> góc uOv = 90 độ (vì 2 góc uOz, góc zOv kề nhau) 
=> Tia Ou vuông góc Tia Ov 
=> Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau

Bình luận (0)
NT
Xem chi tiết
HS
15 tháng 9 2019 lúc 20:21

O A B C M N

Gọi AOC và COB là hai góc kề bù , OM và ON theo thứ tự là các tia phân giác của hai góc ấy . Ta có :

\(\widehat{MOC}+\widehat{CON}=\frac{\widehat{AOC}}{2}+\frac{\widehat{COB}}{2}=\frac{\widehat{AOC}+\widehat{COB}}{2}=\frac{180^0}{2}=90^0\)

Ta thấy tia OC nằm giữa hai tia OM và ON nên \(\widehat{MOC}+\widehat{CON}=\widehat{MON}\)

Do đó MON = 900 . Vậy \(OM\perp ON\)

Bình luận (0)
NA
30 tháng 7 2020 lúc 10:30

* Gọi góc xOz, góc zOy là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy.

* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov.

* Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy

nên:

{ góc uOz = 1/2 góc xOz

{ góc zOv = 1/2 góc zOy

Suy ra:

{ 2 góc uOz = góc xOz

{ 2 góc zOv = góc zOy

Ta lại có:

góc xOz + góc zOy = 180 độ (vì 2 góc xOz, góc zOy kề bù)

=> 2 góc uOz + 2 góc zOv = 180 độ

=> 2(góc uOz + góc zOv) = 180 độ

=> góc uOz + góc zOv = 90 độ

=> góc uOv = 90 độ (vì 2 góc uOz, góc zOv kề nhau)

=> Tia Ou vuông góc Tia Ov

Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau.

Bình luận (0)
 Khách vãng lai đã xóa
KB
Xem chi tiết
LT
26 tháng 9 2018 lúc 19:47

SGK Toán 7

Bình luận (0)
H24
26 tháng 9 2018 lúc 19:47

trong sgk toán 7 bài định lý hình học có giải nhaa

- tập 1

Bình luận (0)
SM
26 tháng 9 2018 lúc 19:54

O x y z n m

Gọi hai góc kề bù là góc xOz và góc zOy.

On là tia phân giác góc xOz

Om là tia phân giác góc zOy.

Vì On là tia phân giác góc xOz

=> Góc zOn = \(\frac{1}{2}\widehat{xOz}\)( tính chất tia phân giác ) ( 1 )

Vì Om là tia phân giác góc zOy

=> \(\widehat{zOm}=\frac{1}{2}\widehat{zOy}\)( tính chất tia phân giác ) ( 2 )

Cộng vế với vế của (1), (2)

=> \(\widehat{nOz}+\widehat{zOm}=\frac{1}{2}\left(\widehat{xOz}+\widehat{zOy}\right)\)

=> \(\widehat{nOm}=\frac{1}{2}\widehat{xOy}=\frac{180^o}{2}=90^o\)

=> Om vuông góc với On ( Hai tia phân giác của hai góc kề bù vuông góc với nhau ) 

Bình luận (0)
TA
Xem chi tiết
MA
25 tháng 10 2016 lúc 21:30

Ta có:góc yOn=1/2 góc xOy(On là tia phân giác của góc xOy)

Góc yOn =1/2 góc yOz(On là tia phân giác của góc yOz)

Suy ra: góc yOm+góc yOn=1/2 góc xOy+1/2 góc yOz

Suy ra góc mOn=1/2(góc xOy+góc yOz)

=1/2.180 độ =90 độ

Vậy góc mOn =90 độ

Bình luận (0)
H24
Xem chi tiết
H24
2 tháng 4 2021 lúc 18:45

1,Cho 2 góc xOy và yOz kề bù .

Om ; On lần lượt là tia phân giác của 2 góc đó 

⇒{O1^=O2^=12.xOy^O3^=O4^=12.yOz^

⇒O2^+O3^=12(xOy^+yOz^)=12.1800=900

=> Đpcm

Bình luận (0)
 Khách vãng lai đã xóa
H24
2 tháng 4 2021 lúc 18:46

2,

Ta có:

   mOy+nOy=90o( gt )

⇒xOm+zOn=90o

Mà xOm=mOy( Om là tia phân giác góc xOy )

⇒nOy=zOn

On là tia phân giác góc yOz.

Bình luận (0)
 Khách vãng lai đã xóa
IF
Xem chi tiết
LV
24 tháng 6 2016 lúc 21:47

Hình bạn tự vẽ nha(thế nào cũng được miễn cứ có 2 tia phân giác của 2 góc kề bù; ở đây mình lấy 2 góc kề bù là góc xoy và yoz 2 tia phân giác lần lượt là ot và ot')

 \(xoy+yoz=180^o\)

\(\Rightarrow\frac{1}{2}\left(xoy+yoz\right)=90^o\)

\(\Rightarrow\frac{1}{2}.xoy+\frac{1}{2}.yoz=90^o\)

Vì ot và ot' là 2 tia phân giác của 2 góc kề bù xoy và yoz

=>y nằm giữa ot và ot'

\(\Rightarrow toy+yot'=90\)

=>ĐPCM

(bạn đọc thấy chỗ nào sai thì tự sửa nha)

Bình luận (0)
NY
Xem chi tiết
LD
5 tháng 9 2016 lúc 16:53

Gọi góc xOz, góc zOy là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy. 

o

* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov. 
* Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy 
nên: 
{ góc uOz = 1/2 góc xOz 
{ góc zOv = 1/2 góc zOy 
Suy ra: 
{ 2 góc uOz = góc xOz 
{ 2 góc zOv = góc zOy 
Ta lại có: 
góc xOz + góc zOy = 180 độ (vì 2 góc xOz, góc zOy kề bù) 
=> 2 góc uOz + 2 góc zOv = 180 độ 
=> 2(góc uOz + góc zOv) = 180 độ 
=> góc uOz + góc zOv = 90 độ 
=> góc uOv = 90 độ (vì 2 góc uOz, góc zOv kề nhau) 
=> Tia Ou vuông góc Tia Ov 
Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau.

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 4 2018 lúc 11:09

Chọn đáp án D

Bình luận (0)