Chứng minh rằng:
\(\sqrt{2}\) là số vô tỉ
Giúp mk với
Chứng minh rằng các số sau là số vô tỉ
\(2\sqrt{2}+\sqrt{3}\)
\(\sqrt{3}-\sqrt{2}\)
Giả sử \(2\sqrt{2}+\sqrt{3}=x\left(x\in Q\right)\)
\(\Leftrightarrow\left(2\sqrt{2}+\sqrt{3}\right)^2=x^2\\ \Leftrightarrow11+4\sqrt{6}=x^2\\ \Leftrightarrow\sqrt{6}=\dfrac{x^2-11}{4}\)
Vì \(\sqrt{6}\) là số vô tỉ nên \(\dfrac{x^2-11}{4}\) là số vô tỉ \(\Rightarrow\) \(x^2\) là số vô tỉ, \(\Rightarrow x\) là số vô tỉ (vô lý)
Vậy \(2\sqrt{2}+\sqrt{3}\) là số vô tỉ
Giả sử \(\sqrt{3}-\sqrt{2}=x\left(x\in Q\right)\)
\(\Leftrightarrow\left(\sqrt{3}-\sqrt{2}\right)^2=x^2\\ \Rightarrow5-2\sqrt{6}=x^2\\ \Rightarrow\sqrt{6}=\dfrac{5-x^2}{2}\)
Vì \(\sqrt{6}\) là số vô tỉ nên \(\dfrac{5-x^2}{2}\Rightarrow\) \(x^2\)là số vô tỉ, \(\Rightarrow x\) là số vô tỉ (vô lý)
Vậy \(\sqrt{3}-\sqrt{2}\) là số vô tỉ
Chứng minh rằng \(\sqrt{12}\)là số vô tỉ
Gải hộ mk nha
Bn nào giải đúng mk tích cho 2 lần
Giả sử phản chứng √12 là số hữu tỉ ⇒ √12 có thể biểu diễn dưới dạng phân số tối giản m/n
√12 = m/n
⇒ 12 = m²/n²
⇒ m² = 12n²
⇒ m² chia hết cho n²
⇒ m chia hết cho n (vô lý vì m/n là phân số tối giản nên m không chia hết cho n)
Vậy giả sử phản chứng là sai. Suy ra √12 là số vô tỉ.
bạn ấn máy tính \(\sqrt{12}\) nếu nó ra 1 hàng số dài thì nó là số vô tỉ
Chứng minh rằng \(\sqrt{2}\) là số vô tỉ.
Các bạn giúp mk nha.Cảm ơn các bạn nhiều
Gỉa sử \(\sqrt{2}\)là số hữu tỉ
=> \(\sqrt{2}\)còn viết được dưới dạng \(\frac{m}{n}\)=> m và n là 2 số nguyên tố cùng nhau
=>\(\left(\frac{m}{n}\right)^2=2\)
=> m2 = 2n2
=> m2 chia hết cho 2
=> m chia hết cho 2 ( 1 )
Đặt m = 2k ( k thuộc Z )
=> ( 2k )2 = 2n2
=> 2k2 = n2
=> n2 chia hết cho 2
=> n chia hết cho 2 ( 2 )
Từ ( 1 ) và ( 2 ) => m và n cùng chia hết cho 2
=> m và n không phải là 2 số nguyên tố cùng nhau
=> điều đã giả sử là sai
=> \(\sqrt{2}\) là số vô tỉ
k mình nha !!!
Chứng minh rằng \(\sqrt{3}\) và \(\sqrt{5}\)là các số vô tỉ
giúp mk nha, thứ 2 nộp r
thank you
Giả sử \(\sqrt{3}\)không phải số vô tỉ.
Đặt \(\sqrt{3}=\frac{m}{n}\)( m , n là các số nguyên khác 0 ;\(\frac{m}{n}\)tối giản, hay \(ƯCLN\left(m;n\right)=1\))
\(\Rightarrow\left(\sqrt{3}\right)^2=\left(\frac{m}{n}\right)^2\)
\(\Rightarrow\frac{m^2}{n^2}=3\)
\(\Rightarrow m^2=3n^2\)
\(\Rightarrow m^2\text{⋮}3\)
\(\Rightarrow m\text{⋮}3\)
Đặt \(m=3k\)
\(\Rightarrow\left(3k\right)^2=3n^2\)
\(\Rightarrow3n^2=9k^2\)
\(\Rightarrow n^2=3k^2\)
\(\Rightarrow n^2\text{⋮}3\)
\(\Rightarrow n\text{⋮}3\)
Mà \(m\text{⋮}3\) nên \(ƯCLN\left(m;n\right)\ne1\), trái với điều kiện.
Vậy \(\sqrt{3}\)là số vô tỉ.
Tương tự với \(\sqrt{5}.\)
Chứng minh rằng \(\sqrt{2+\sqrt{5}}\)là số vô tỉ
Ta có: \(\sqrt{5}\) là 1 số vô tỉ
=> \(2+\sqrt{5}\) là 1 số vô tỉ
=> \(\sqrt{2+\sqrt{5}}\) là số vô tỉ
=> đpcm
Giả sử \(\sqrt{2+\sqrt{5}}=q\left(q\inℚ\right)\)
\(\Rightarrow2+\sqrt{5}=q^2\inℚ\)
\(\Leftrightarrow\sqrt{5}=q-2\inℚ\)(Vô lý vì \(\sqrt{5}\in I\))
Vậy điều giả sử là sai hay \(\sqrt{2+\sqrt{5}}\)là số vô tỉ
Chứng minh rằng : \(\sqrt{2}+\sqrt{3}\) là số vô tỉ
Mọi số n không là số chính phương thì \(\sqrt{n}\)là số vô tỉ nên
\(\sqrt{2}\)và \(\sqrt{3}\)là số vô tỉ
Suy ra \(\sqrt{2}+\sqrt{3}\)là số vô tỉ
Đặt \(x=\sqrt{2}+\sqrt{3}\)
Giả sử x là số hữu tỉ , nghĩa là \(x=\frac{p}{q}\left(p,q\in N,q\ne0\right)\)
Ta có : \(\frac{p}{q}=\sqrt{2}+\sqrt{3}\)
\(\Leftrightarrow\frac{p^2}{q^2}=\left(\sqrt{2}+\sqrt{3}\right)^2\)
\(\Leftrightarrow\frac{p^2}{q^2}-5=2\sqrt{6}\) ( vô lí )
Vì \(\frac{p^2}{q^2}\) là số hữu tỉ và \(2\sqrt{6}\) là số vô tỉ
Vậy \(x=\sqrt{2}+\sqrt{3}\) không phải là số hữu tỉ
\(\Rightarrow x=\sqrt{2}+\sqrt{3}\) lá số vô tỉ
Chúc bạn học tốt !!!
Chứng minh rằng:
a) \(\sqrt{2}\)là số vô tỉ
b) \(3\sqrt{3}-1\)là số vô tỉ
a) Bằng phản chứng giả sử \(\sqrt{2}\)là số hữu tỉ
---> Đặt \(\sqrt{2}=\frac{a}{b}\)với ƯCLN(a,b)=1 (tức là a/b tối giản), a,b>0
\(\Rightarrow b\sqrt{2}=a\Rightarrow2b^2=a^2\Rightarrow a^2\)là số chẵn \(\Rightarrow a\)là số chẵn
Đặt \(a=2k\Rightarrow b\sqrt{2}=2k\Rightarrow2b^2=4k^2\Rightarrow b^2=2k^2,k\inℕ\)
\(\Rightarrow b^2\)là số chẵn\(\Rightarrow b\)là số chẵn
Vậy \(2\inƯC\left(a,b\right)\RightarrowƯCLN\left(a,b\right)\ne1\)---> Mâu thuẫn giả thiết--->đpcm
b) Bằng phản chứng giả sử \(3\sqrt{3}-1\)là số hữu tỉ
---> Đặt \(3\sqrt{3}-1=\frac{a}{b}\)với ƯCLN(a,b)=1 và a,b>0
\(\Rightarrow3b\sqrt{3}=a+b\Rightarrow27b^2=\left(a+b\right)^2\Rightarrow\left(a+b\right)^2⋮9\Rightarrow a+b⋮3\)
Đặt \(a+b=3k,k\inℕ\Rightarrow a=3k-b\Rightarrow\frac{3k-b}{b}=3\sqrt{3}-1\Rightarrow\frac{3k}{b}=3\sqrt{3}\)
\(\Rightarrow k^2=3b^2\Rightarrow k^2⋮3\Rightarrow k⋮3\)---> Đặt \(k=3l,l\inℕ\Rightarrow a=9l-b\Rightarrow\frac{9l-b}{b}=3\sqrt{3}-1\Rightarrow\frac{9l}{b}=3\sqrt{3}\)
\(\Rightarrow b^2=3l^2\Rightarrow b^2⋮3\Rightarrow b⋮3\)
\(\Rightarrow3\inƯC\left(a,b\right)\RightarrowƯCLN\left(a,b\right)\ne1\)---> Mâu thuẫn giả thiết---> đpcm
(Bài dài quá, giải mệt vler !!)
Chứng minh rằng
a) 7 - \(\sqrt{2}\)là số vô tỉ
b) \(\sqrt{5}\)+24 là số vô tỉ
Bài giải
a, Ta có :
\(\sqrt{2}\) là số vô tỉ \(\Rightarrow\) \(7-\sqrt{2}\) là số vô tỉ
b, Ta có :
\(\sqrt{5}\)là số vô tỉ \(\Rightarrow\sqrt{5}+24\) là số vô tỉ
♥๖Lan_Phương_cute#✖#girl_học_đường๖ۣۜ💋:))♥。◕‿◕。
chứng minh them \(\sqrt{2}\) và \(\sqrt{5}\) là số vô tỉ nữa ! Vào đây tham khảo :
https://olm.vn/hoi-dap/detail/227642288657.html
Chứng minh rằng :1+\(\sqrt{2}\)là số vô tỉ
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
Note: Mình tạm gọi căn 2 là c nhé.
CM c vô tỉ: GS c là số hữu tỉ >> c = a/b ( a,b khác 0; ƯCLN = 1)
>> c^2 = 2 = a^2/b^2
>>a^2 : 2 =b^2
Mà ta có ƯCLN của a,b = 1 >> vô lý >> c là số vô tỉ
CM 1+c vô tỉ: GS 1+c = d. GS d là số hữu tỉ >> d-1=c. Có d và 1 là 2 số hữu tỉ>> d-1 là số hữu tỉ mà c là số vô tỉ >> vô lý >> d là số vô tỉ