Tìm dư khi chia
A= 2011+2212+19962009 cho 7
(dạng toán đồng dư)
dạng toán đồng dư
tìm dư trong các phép chia sau
a,6.5123+7162chia cho 132
b,20112012+20122013+2010 chia cho 7
c,20122012chia cho 11
d,22013chia cho 35
e,20132011 chia cho 14
f,1111 mũ 11chia cho 30
cố lên tik cho
khi chiaa 5 , 7 , 11 đc số dư lần lượt 3 , 4 ,6
a, CM 2a - 1 chiaa hết 5, 7 , 11
b, tìm a biết 100 < a < 200
help me plese !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Câu 1:Tìm số dư khi chia 31000 cho 2;5;11;13;17 (giải theo dạng toán đồng dư)
Câu 2:(giải theo dạng toán đồng dư).
Chứng minh A=22225555+ 55552222 chia hết cho 7
B=32010+52010 chia hết cho 13
Câu 3: (giải theo dạng toán đồng dư)
Chứng minh: A=62n+19n- 2n+1 chia hết cho 17
B=33n+2+5.23n+1chia hết cho 19
C=212n+1+172n+1+15 không chia hết cho 19
Giải bài toán bằng đồng dư thức:
1. Tìm số dư của phép chia:
a) 22024 cho 7
b) 570+750 cho 12
c) 32005+42005 cho 11,13
d) 1044205 cho 7
e) 32003 cho 13
*Sử dụng đồng dư thức
a.
\(2^{2024}=2^2.2^{2022}=4.\left(2^3\right)^{674}=4.8^{674}\)
Do \(8\equiv1\left(mod7\right)\Rightarrow8^{674}\equiv1\left(mod7\right)\)
\(\Rightarrow4.8^{674}\equiv4\left(mod7\right)\)
Hay \(2^{2024}\) chia 7 dư 4
b.
\(5^{70}+7^{50}=\left(5^2\right)^{35}+\left(7^2\right)^{25}=25^{35}+49^{25}\)
Do \(\left\{{}\begin{matrix}25\equiv1\left(mod12\right)\\49\equiv1\left(mod12\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}25^{35}\equiv1\left(mod12\right)\\49^{25}\equiv1\left(mod12\right)\end{matrix}\right.\)
\(\Rightarrow25^{35}+49^{25}\equiv2\left(mod12\right)\)
Hay \(5^{70}+7^{50}\) chia 12 dư 2
c.
\(3^{2005}+4^{2005}=\left(3^5\right)^{401}+\left(4^5\right)^{401}=243^{401}+1024^{401}\)
Do \(\left\{{}\begin{matrix}243\equiv1\left(mod11\right)\\1024\equiv1\left(mod11\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}243^{401}\equiv1\left(mod11\right)\\1024^{401}\equiv1\left(mod11\right)\end{matrix}\right.\)
\(\Rightarrow243^{401}+1024^{401}\equiv2\left(mod11\right)\)
Hay \(3^{2005}+4^{2005}\) chia 11 dư 2
d.
\(1044\equiv1\left(mod7\right)\Rightarrow1044^{205}\equiv1\left(mod7\right)\)
Hay \(1044^{205}\) chia 7 dư 1
e.
\(3^{2003}=3^2.3^{2001}=9.\left(3^3\right)^{667}=9.27^{667}\)
Do \(27\equiv1\left(mod13\right)\Rightarrow27^{667}\equiv1\left(mod13\right)\)
\(\Rightarrow9.27^{667}\equiv9\left(mod13\right)\)
hay \(3^{2003}\) chia 13 dư 9
A=3^2009*7^2010*13^2011. Tìm số dư khi chia cho 10
Tìm số dư khi chia 192010 + 72011 cho 27
chứng minh:
555222 +222555 chia hết cho 7
(dạng toán đồng dư)
555222 + 222555 =222555 + 555555 - (555555 - 555222)
= 222555 + 555555 - 555222(555333 - 1)
Ta có :
222555 + 555555 chia hết cho 222 + 555 = 777 chia hết cho 7 (1)
555333 - 1 = (5553)111 - 1 \(⋮\) 5553 - 1
Ta có 555 = 7 . 79 + 2 = 7k + 2 (với k = 79)
5553 - 1 = (7k+2)³ - 1 = (7k)³ + 3.(7k)².2 + 3.7k.2² + 8 - 1 = (7k)³ + 3.(7k)².2 + 3.7k.2² + 7 \(⋮\) 7
=> 555333 - 1 chia hết cho 7 (2)
Từ (1) và (2) => 555222 + 222555 chia hết cho 7 (đpcm)
cho 1 phép chia có thương là 6 vả dư là 3 tổng số chia và số bị chia , và số dư bằng 195 . tìm số chiaa và số bị chia
Tổng số bị chia và số chia là
195-3=192
Nếu bớt số bị chia đi 3 đơn vị thì được số mới chia hết cho số chia và được thương là 6 hay số mới gấp 6 lần số chia
Tổng số mới và số chia là
192-3=189
Chia số mới thành 6 phần bằng nhau thì số chia là 1 phần
Giá trị 1 phần hay số chia là
189:(6+1)=27
Số bị chia là
27x6+3=165
tìm số dư khi chia 20102011+20112010 cho 9