Những câu hỏi liên quan
NL
Xem chi tiết
CN
Xem chi tiết
NM
4 tháng 1 2022 lúc 18:33

\(\left(2x-y\right)^3=\left(2x\right)^3-3\left(2x\right)^2y+3\cdot2x\cdot y^2-y^3\\ =8x^3-12x^2y+6xy^2-y^3\)

Chọn \(12x^2y\)

Bình luận (0)
LC
Xem chi tiết
TL
2 tháng 8 2020 lúc 18:32

1) ta tìm cách loại bỏ 18y3, vì y=0 không là nghiệm của phương trình (2) tương đương 72x2y2+108xy=18y3

thế 18y3 từ phương trình (1) vào ta được

8x3y3-72x2y2-108xy+27=0

<=> \(xy=\frac{-3}{2}\)hoặc \(xy=\frac{21-9\sqrt{5}}{4}\)hoặc \(xy=\frac{21+9\sqrt{5}}{4}\)

thay vào (1) ta tìm được x,y

=> y=0 (loại) hoặc \(y=\sqrt[3]{\frac{8\left(xy\right)^3+27}{18}}=\pm\frac{3}{2}\left(\sqrt{5}-3\right)\Rightarrow x=\frac{1}{4}\left(3\pm\sqrt{5}\right)\)

vậy hệ đã cho có nghiệm

\(\left(x;y\right)=\left(\frac{1}{4}\left(3-\sqrt{5}\right);-\frac{3}{2}\left(\sqrt{5}-3\right)\right);\left(\frac{1}{4}\left(3+\sqrt{5}\right);\frac{-3}{2}\left(3+\sqrt{5}\right)\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
PH
Xem chi tiết
H24
Xem chi tiết
TL
17 tháng 8 2021 lúc 18:18

đề bài là rút gọn à

Bình luận (0)
LH
Xem chi tiết
PD
21 tháng 7 2018 lúc 11:01

a)\(9y^3-y\)

\(=y\left(9y^2-1\right)\)

\(=y\left(3y-1\right)\left(3y+1\right)\)

Bình luận (0)
DX
21 tháng 7 2018 lúc 13:25

\(9y^3-y=y\left(9y^2-1\right)=y\left(3y+1\right)\left(3y-1\right)\)

\(8y^3-2y\left(1-2y\right)^2=2y\left[\left(2y\right)^2-\left(1-2y\right)^2\right]=2y\left(4y-1\right)\)

\(2x^3-8x^2+8x=2x\left(x^2-4x+4\right)=2x\left(x-2\right)^2\)

Bình luận (0)
DX
21 tháng 7 2018 lúc 13:36

\(2x^4-6x^3+6x^2-2x=2x\left(x^3-3x^2+3x-1\right)=2x\left(x-1\right)^3\)\(x^3-8x^2+8x=x\left(x^2-8x+8\right)\)

\(5x^4-15x^3y+15x^2y^2-5xy^3-5x=5x\left(x^3-3x^2y+3xy^2-y^3-1\right)=5x\left[\left(x-y\right)^3-1\right]=5x\left(x-y-1\right)\left(x^2-2xy+y^2+x-y+1\right)\)

Bình luận (0)
PH
Xem chi tiết
PH
Xem chi tiết
NH
Xem chi tiết
NT
12 tháng 11 2021 lúc 22:01

Chọn C

Bình luận (0)