Cho a và b là 2 số nguyên tố lẻ liên tiếp .
Chứng minh rằng ( a+b ) : 2 là hợp số
Giả sử a và b là 2 số nguyên tố lẻ liên tiếp .Chứng minh (a+b):2 là hợp số
anh mình giải hộ đấy:
vì a và b là số lẻ
=> a+b là số chẵn
=> a+b chia hết cho 2
làm xong nhớ thanks nha^-^
Chứng minh rằng :
a) 2 và 3 là hai số tự nhiên liên tiếp đều là số nguyên tố.
b) 3,5,7 là ba số lẻ liên tiếp đểu là số nguyên tố.
Ban lam giup minh
Tinh nhanh lop 4
42 x 43 - 12 x 9 - 42 x 3
1, Cho A=111...1 (n chữ số 1)
B=333..36333...3 (n chữ số 3 / n chữ số 3)
Chứng minh rằng: A;B là các hợp số
2, Cho p, q là các số nguyên tố lẻ liên tiếp
Chứng minh rằng: \(\frac{p+q}{2}\)là hợp số
1.Chứng tỏ rằng hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
2.Chứng minh rằng với mọi số tự nhiên , các số sau là các số nguyên tố cùng nhau.
a) n+1 và n+2 b)2n+2 và 2n+3
c)2n+1 và n+1 d)n+1 và 3n+4
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
Bài 2:
c.
Gọi $d=ƯCLN(2n+1, n+1)$
$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.
d.
Gọi $d=ƯCLN(n+1, 3n+4)$
$\Rightarrow n+1\vdots d; 3n+4\vdots d$
$\Rightarrow 3n+4-3(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$
$\Rightarrow$ 2 số này nguyên tố cùng nhau.
cho a,b là hai số nguyên tố lẻ liên tiếp.
Chứng minh rằng (a+b) : 2 là hợp số
Giải:
Ta có: (a+b) : 2 ; a và b là nguyên tố lẻ niên tiếp
Vì tổng của 2 số lẻ luôn luôn là số chẵn nên (a+b) : 2
=> (a+b) : 2 là hợp số.
Chúc bạn học tốt!
Chứng minh rằng:
a, Hai số tự nhiên liên tiếp (khác 0) là hai số nguyên tố cùng nhau
b, Hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
c, 2n+1 và 3n+1 với n ∈ N là hai số nguyên tố cùng nhau
a, Gọi d ∈ ƯC(n,n+1) => (n+1) – 1 ⋮ d => 1 ⋮ d => d = 1. Vậy n, n+1 là hai số nguyên tố cùng nhau
b, Gọi d ∈ ƯC(2n+1,2n+3) => (2n+3) – (2n+1) ⋮ d => 2 ⋮ d => d ∈ {1;2}. Vì d là số lẻ => d = 1 => dpcm
c, Gọi d ∈ ƯC(2n+1,3n+1) => 3.(2n+1) – 2.(3n+1) ⋮ d => 1 ⋮ d => d = 1 => dpcm
Chứng minh rằng:
a) Hai số tự nhiên liên tiếp (khác 0) là hai số nguyên tố cùng nhau.
b) Hai số lẻ liên tiếp là hai số nguyên tố cùng nhau.
c) 2n + 1 và 3n + 1 với n ∈ N là hai số nguyên tố cùng nhau
Đặt (3n+1,2n+1)=₫
=>(2(3n+1(,3(2n+1)=₫
=>(6n+2,6n+3)=₫=>6n+2...₫,6n+3...₫
=>6n+3-6n+2...₫=>1...₫=>₫=1
=>(3n+1,2n+1)=1 nên 3n+1,2n+1laf 2 snt cùng nhau
chứng minh rằng các số sau là số nguyên tố cùng nhau
a, 2 số lẻ liên tiếp
b, (3*n+1) và (4n+1)
cho a và b là 2 số nguyên tố lẻ liên tiếp ( b > a ) . CMR ( a + b ) : 2 là hợp số
Vì a và b là 2 số nguyên tố lẻ liên tiếp và b > a nên :
=> a + 2 = b
=> ( a + b ) : 2
= ( a + a + 2 ) : 2
= ( a x 2 + 2 ) : 2
= a x 2 : 2 + 2 : 2
= a + 1
Mà a là số lẻ nên a + 1 là số chẵn
Vậy ( a + b ) : 2 là hợp số ( đpcm )