Những câu hỏi liên quan
BV
Xem chi tiết
DV
31 tháng 5 2015 lúc 9:58

\(\frac{2n-7}{n-2}=\frac{2n-4-3}{n-2}=2-\frac{3}{n-2}\in Z\)

\(\Leftrightarrow n-2\inƯ\left(3\right)\Leftrightarrow n-2\in\left\{-3;-1;1;3\right\}\Leftrightarrow n\in\left\{-1;1;3;5\right\}\) 

Bình luận (0)
DL
31 tháng 5 2015 lúc 9:57

Để 2n-7/n-2 là số nguyên thì 2n-7 phải chia hết cho n-2(n thuộc Z)

=> 2(n-2)+11 chia hết cho n-2(n thuộc Z)

=> 11 chia hết cho n-2 hay n-2 thuộc Ư(11)={1;-1;11;-11}

=> n thuộc {3;1;13;-9}

Vậy để 2n-7/n-2 là số nguyên thì n thuộc {3;1;13;-9}, (n thuộc Z)

Chúc bạn học tốt!^_^

Bình luận (0)
JY
Xem chi tiết
TT
Xem chi tiết
TV
Xem chi tiết
DT
Xem chi tiết
NT
15 tháng 12 2016 lúc 12:58

làm câu

Bình luận (0)
LK
Xem chi tiết
NT
21 tháng 1 2024 lúc 21:37

a: Để A là phân số thì \(2n+4\ne0\)

=>\(2n\ne-4\)

=>\(n\ne-2\)

b: Thay n=0 vào A, ta được:

\(A=\dfrac{3\cdot0-2}{2\cdot0+4}=\dfrac{-2}{4}=-\dfrac{1}{2}\)

Thay n=-1 vào A, ta được:

\(A=\dfrac{3\cdot\left(-1\right)-2}{2\cdot\left(-1\right)+4}=\dfrac{-5}{-2+4}=\dfrac{-5}{2}\)

Thay n=2 vào A, ta được:

\(A=\dfrac{3\cdot2-2}{2\cdot2+4}=\dfrac{4}{8}=\dfrac{1}{2}\)

c: Để A  nguyên thì \(3n-2⋮2n+4\)

=>\(6n-4⋮2n+4\)

=>\(6n+12-16⋮2n+4\)

=>\(-16⋮2n+4\)

=>\(2n+4\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)

=>\(2n\in\left\{-3;-5;-2;-6;0;-8;4;-12;12;-20\right\}\)

=>\(n\in\left\{-\dfrac{3}{2};-\dfrac{5}{2};-1;-3;0;-4;2;-6;6;-10\right\}\)

Bình luận (0)
H24
Xem chi tiết
TN
Xem chi tiết
DL
Xem chi tiết
AH
6 tháng 5 2021 lúc 12:17

Lời giải:

Với số nguyên $n$, để $\frac{n+3}{2n+9}$ là số nguyên thì $n+3\vdots 2n+9$

$\Rightarrow 2(n+3)\vdots 2n+9$

$\Rightarrow (2n+9)-3\vdots 2n+9$
$\Rightarrow 3\vdots 2n+9$

$\Rightarrow 2n+9\in\left\{\pm 1;\pm 3\right\}$

$\Rightarrow n\in\left\{-5;-4;-3; -6\right\}$

 

Bình luận (0)