Những câu hỏi liên quan
NT
Xem chi tiết
NH
5 tháng 5 2016 lúc 18:54

Vì mặt phẳng (P) vuông góc với Ox nên (P) nhận vecto chỉ phương đơn vị \(\overrightarrow{i}=\left(1;0;0\right)\) của Ox làm vecto pháp tuyến. Do đó \(\left(P\right)\) có phương trình :

\(1.\left(x-1\right)+0\left(y-2\right)+0\left(z-3\right)=0\)

hay \(x-1=0\)

Bình luận (0)
PB
Xem chi tiết
CT
16 tháng 7 2017 lúc 13:54

Mặt phẳng ( β ) song song với trục Oy và vuông góc với mặt phẳng ( α ):

2x – y + 3z + 4 = 0, do đó hai vecto có giá song song hoặc nằm trên ( β ) là:  j →  = (0; 1; 0) và  n α →  = (2; −1; 3)

Suy ra ( β ) có vecto pháp tuyến là  n β →  =  j →    n α →  = (3; 0; −2)

Mặt phẳng ( β ) đi qua điểm M(2; -1; 2) có vecto pháp tuyến là:  n β →  = (3; 0; −2)

Vậy phương trình của ( β ) là: 3(x – 2) – 2(z – 2) = 0 hay 3x – 2z – 2 = 0

Bình luận (0)
PB
Xem chi tiết
CT
5 tháng 2 2018 lúc 14:57

Bình luận (0)
PB
Xem chi tiết
CT
12 tháng 5 2018 lúc 16:01

Bình luận (0)
NH
Xem chi tiết
PB
Xem chi tiết
CT
31 tháng 1 2018 lúc 12:23

Chọn B.

Phương pháp: Kinh nghiệm: Chiếu lên trục, mặt phẳng đặc biệt thì  thiếu gì thì cho đấy bằng 0.

Sau đó dùng phương trình mặt phẳng theo đoạn chắn để viết.

Bình luận (0)
PB
Xem chi tiết
CT
28 tháng 11 2017 lúc 14:01

Chọn C

Bình luận (0)
DH
Xem chi tiết
AV
Xem chi tiết
IT
18 tháng 8 2021 lúc 15:05

gọi Pt đường thảng .....y=ax+b(d)

d đi qua M(-1,1)   1=-a+b⇔b=a+1

gọi d cắt Ox tại \(A\left(-\dfrac{b}{a},O\right)\)

d cắt Oy tại \(B\left(O,b\right)\)

\(\Delta AOB\) vuông cân tại o

\(\Rightarrow OA=OB\Rightarrow\left(-\dfrac{b}{a}\right)^2+o^2=o^2+b^2\)

\(\dfrac{b^2}{a^2}=b^2\Leftrightarrow\dfrac{1}{a^2}=1\Leftrightarrow a^2=1\)

\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}b=2\\b=0\left(loại\right)\end{matrix}\right.\)

(do d cắt 2 trục tọa độ nên a,b≠0)

vậy PtT đg thảng d:y=x+2

Bình luận (0)
NL
18 tháng 8 2021 lúc 15:14

Gọi pt đường thẳng có dạng \(y=ax+b\)

Đường thẳng qua M tạo 2 trục tọa độ 1 tam giác vuông cân khi nó có hệ số góc \(a=1\) hoặc \(a=-1\)

\(\Rightarrow\left[{}\begin{matrix}y=x+b\\y=-x+b\end{matrix}\right.\)

Thay tọa độ M vào phương trình ta được:

\(\left[{}\begin{matrix}1=-1+b\\1=-\left(-1\right)+b\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}b=2\\b=0\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}y=x+2\\y=-x\end{matrix}\right.\)

Bình luận (0)