Tìm hai số tự nhiên x,y sao cho:\(\frac{3+x}{7+y}\)=\(\frac{3}{7}\) và x+y=20
tìm cặp số tự nhiên x,y sao cho
a,\(\frac{x}{6}-\frac{2}{y}=\frac{1}{12}\)
b,\(\frac{3+x}{7+y}=\frac{3}{7}\)và x+y=20
c,\(\frac{3}{x}+\frac{4}{3}=\frac{5}{6}\)
Câu 1: Tìm hai số tự nhiên x và y, biết: \(\frac{3+x}{7+y}=\frac{3}{7}\) và \(x+y=20\)
\(\frac{3+x}{7+y}=\frac{3}{7}\Leftrightarrow\left(3+x\right).7=3.\left(7+y\right)\)\(\Leftrightarrow21+7x=21+3y\)
\(\Rightarrow7x=3y\) (*)
Vì x + y = 20 nên x = 20 - y
Thay x = 20 - y vào (*) được:
7.(20 - y) = 3y
\(\Leftrightarrow\) 140 - y = 3y
\(\Rightarrow\) 3y + y = 140
4y = 140
\(\Leftrightarrow\) y = 35
Thay y = 35 và (*) được 7x = 3.35 \(\Leftrightarrow\) 7x = 105 \(\Rightarrow\) x = 15
Tìm hai số liên tiếp x và y
x < \(8\frac{2}{3}-\frac{12}{5}\)< y
Tìm số tự nhiên x sao cho
\(4\frac{3}{5}+\frac{7}{10}\)< x < \(\frac{20}{3}\)
bạn có thể ghi bài này chi tiết hơn cho mình được không ?
tìm các số tự nhiên x,y sao cho \(\frac{x}{9}-\frac{3}{7}=\frac{1}{18}\)
\(\frac{x}{9}=\frac{1}{18}+\frac{3}{7}\)
=> \(\frac{x}{9}=\frac{7}{126}+\frac{54}{126}\)
=> \(\frac{x}{9}=\frac{61}{126}\)
=> \(x=\frac{61}{126}\cdot9=\frac{61}{14}\)
y đâu ra ?
Ta có : \(\frac{x}{9}-\frac{3}{y}=\frac{1}{18}\)
=> \(\frac{3}{y}=\frac{2x-1}{18}\)
=> \(y\left(2x-1\right)=54\)
Vì \(x,y\inℕ\)nên 2x - 1 \(\inℕ\)
Ta có : \(Ư\left(54\right)=\left\{1;2;3;6;9;18;27;54\right\}\)
y | 1 | 2 | 3 | 6 | 9 | 18 | 27 | 54 |
2x - 1 | 54 | 27 | 18 | 9 | 6 | 3 | 2 | 1 |
2x | 55 | 28 | 19 | 10 | 7 | 4 | 3 | 2 |
x | \(\varnothing\) | 14 | loại | 5 | loại | 2 | loại | 1 |
Vậy \(\left(x,y\right)\in\left\{\left(14,2\right);\left(5,6\right);\left(2,18\right);\left(1,54\right)\right\}\)
Tìm các số tự nhiên x,y sao cho ( x,y ) = 1 và \(\frac{x+y}{x^2+y^2}=\frac{7}{25}\)
do x,y là 2 số nguyên tố cùng nhau nên
x | y |
1 | 6 |
3 | 4 |
vậy thỏa x=3; y=4
ki kiểu ni là......gọi là........
tìm các số tự nhiên x,y sao cho (x;y)=1 và \(\frac{7}{25}=\frac{x+y}{x^2+y^2}\)
Tìm các số tự nhiên x, y sao cho \(\left(x,y\right)\)= 1 và \(\frac{x+y}{x^2+y^2}=\frac{7}{25}\)
Bài 1: Tìm x và y, biết:
\(\frac{x}{y}=\frac{5}{3}\left(x^2+y^2=4\right)\) (x và y là 2 số tự nhiên khác 0 )
Bài 2: Tìm x; y; z biết: \(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\left(x+y+z=138\right)\)
\(\frac{x}{y}=\frac{5}{3}\Rightarrow\frac{x}{5}=\frac{y}{3}\)
\(\Rightarrow\frac{x^2}{5^2}=\frac{y^2}{3^2}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2+y^2}{5^2+3^2}=\frac{4}{34}=\frac{2}{17}\)
\(\Rightarrow\hept{\begin{cases}x^2=\frac{50}{17}\\y^2=\frac{18}{17}\end{cases}}\) mà x,y là số tự nhiên nên ko có x,y thỏa mãn
Bài 2:
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{5}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{y}{15}\\\frac{y}{15}=\frac{z}{21}\end{cases}}}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng t/c dãy tỉ số bằng nhau:
Bạn tự làm nha
Bài 1 :
\(\frac{x}{y}=\frac{5}{3}\)
\(\Rightarrow\frac{x}{5}=\frac{y}{3}\)( từ đây ra được là x ; y cùng dấu )
\(\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2+y^2}{25+9}=\frac{4}{34}=\frac{2}{17}\)
\(\Rightarrow x\in\left\{-\frac{5\sqrt{34}}{17};\frac{5\sqrt{34}}{17}\right\}\)
\(y\in\left\{-\frac{3\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right\}\)
Mà x ; y cùng dấu nên :
\(\left(x;y\right)\in\left\{\left(\frac{5\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right);\left(\frac{-5\sqrt{34}}{17};\frac{-3\sqrt{34}}{17}\right)\right\}\)
Bài 2 :
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{138}{46}=3\)
\(\frac{x}{10}=3\Rightarrow x=30\)
\(\frac{y}{15}=3\Rightarrow y=45\)
\(\frac{z}{21}=3\Rightarrow z=63\)
Tìm số tự nhiên , sao cho: (x, y) = 1 và \(\frac{x+y}{x^2+y^2}\)\(=\)\(\frac{7}{25}\)