phân tích thành nhân tử: (a+b+c)^3 - 4(a^3+b^3+c^3)-12abc bằng cách biến đổi: đặt a+b=m, a-b+n
Phân tích đa thức sau thành nhân tử bằng cách đổi biến: đặt a+b=m, a-b=n
\(A=\left(a+b+c\right)^3-4\left(a^3+b^3+c^3\right)-12abc\)
Mình đang cần lời giải (chi tiết). CẢM ƠN
(a+b+c)^3 thì viết được thành [(a+b)+c)]^3 rồi AD hằng đẳng thức để tính. Còn với (a^3+b^3+c^3) ta viết được (a+b)^3 -3a^2b -3ab^2 + c^3=(a+b)^3 -3ab(a+b)+c^3 ...thay vào rồi đổi biến
1,phân tích đa thức sau thành nhân tử (a+b+c)3-4(a3+b3+c3)-12abc băng cách đổi biến:đặt a+b=m,a-b=n
Phân tích thành nhân tử: \(\left(a+b+c\right)^3\) \(-\) \(4\left(a^3+b^3+c^3\right)\) \(-12abc\)bằng cách đổi biến : \(a+b=m\)và \(a-b=n\)
Mình đangg cần gấp éeeeeee
\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)-4\left(a^3+b^3+c^3\right)-12abc\)
\(=-3\left(a^3+b^3+c^3\right)+3\left(a+b\right)\left(b+c\right)\left(c+a\right)-12abc\)
\(=-3\left(\left(a^3+b^3+c^3\right)-\left(a+b\right)\left(b+c\right)\left(c+a\right)+4abc\right)\)
XONG NHAAAAA :3333333
Phân tích đa thức thành nhân tử (a + b + c)3 - 4(a3 + b3 + c3) - 12abc bằng cách đổi biến: đặt a + b = m, a - b = n
\(\left\{{}\begin{matrix}a+b=m\\a-b=n\end{matrix}\right.\)\(\Rightarrow4ab=m^2-n^2\)
Ta có:
\(A=\left(m+c\right)^3-4.\dfrac{m^3+3mn^2}{4}-4c^3-3c\left(m^2-n^2\right)\)
\(=3.\left(-c^3+mc^2-mn^2+cn^2\right)\)
\(=3.\left(m-c\right).\left(c+n\right).\left(c-n\right)\)
\(\Rightarrow A=3.\left(a+b-c\right).\left(c+a-b\right).\left(c-a+b\right)\)
(a+b+c)3-4(a3+b3+c3)-12abc bằng cách biến đổi: đặt a+b=m và a-b=n
Phân tích đa thức thành nhân tử:
I=(a+b+c)^3-4(a^3+b^3+c^3)+12abc
Phân tích thành nhân tử :
\(\left(a+b+c\right)^3-4\left(a^3+b^3+c^3\right)-12abc\)
Đặt \(a+b=m;a-b=n\)
Ta có:\(\Rightarrow\hept{\begin{cases}\left(a+b\right)^2=m^2\\\left(a-b\right)^2=n^2\end{cases}}\Rightarrow\hept{\begin{cases}a^2+2ab+b^2=m^2\\a^2-2ab+b^2=n^2\end{cases}}\Rightarrow\left(a^2+2ab+b^2\right)-\left(a^2-2ab+b^2\right)=m^2-n^2\)
\(\Rightarrow4ab=m^2-n^2\)
Mặt khác :\(a^3+b^3=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]=m\left(n^2+\frac{m^2+n^2}{4}\right)\)
Ta lại có:\(A=\left(a+b+c\right)^3-4\left(a^3+b^3+c^3\right)-12abc\)
\(=\left(m+c\right)^3-4\left[m\left(n^2+\frac{m^2-n^2}{4}\right)+c^3\right]-12abc\)
\(=m^3+3m^2c+3c^2m+c^3-4\left(mn^2+\frac{m^2-n^2}{4}+c^3\right)-12abc\)
\(=m^3+3m^2c+3c^2m+c^3-4\left(\frac{4mn^2+m^3-mn^2}{4}+c^3\right)-3c\left(m^2-n^2\right)\)
\(=m^3+3m^2c+3c^2m+c^3-4\cdot\frac{m^3+3mn^2}{4}-4c^3-3cm^2+3cn^2\)
\(=m^3+3cm^2+3c^2m+c^3-m^3-3mn^2-4c^3-3cm^2+3cn^2\)
\(=\left(m^3-m^3\right)+\left(3cm^2-3cm^2\right)+3c^2m+\left(c^3-4c^3\right)+3cn^2-3mn^2\)
\(=3c^2m-3c^3+3cn^2-3mn^2\)
\(=3\left(c^2m-c^3+cn^2-mn^2\right)\)
\(=3\left[c^2\left(m-c\right)+n^2\left(c-m\right)\right]\)
\(=3\left(c^2-n^2\right)\left(m-c\right)\)
\(=3\left(c-n\right)\left(c+n\right)\left(m-c\right)\)
\(=3\left(c-a+b\right)\left(c+a-b\right)\left(a+b-c\right)\)
P/S:Bài giải dài.có j sai thông cảm cho e nha!
Phân tích đa thưc thành nhân tử:
(a+b+c)3-4(a3+b3+c3)-12abc
Giải quyết bằng toán này bằng cách đặt ẩn phụ.
\(--------------\)
Đặt \(a+b=m\) \(;\) \(a-b=n\) thì \(4ab=\left(a^2+2ab+b^2\right)-\left(a^2-2ab+b^2\right)=\left(a+b\right)^2-\left(a-b\right)^2\) , tức là \(4ab=m^2-n^2\) và \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=\left(a+b\right)\left[\left(a^2-2ab+b^2\right)+ab\right]=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\) ,
tức là \(a^3+b^3=m\left(n^2+\frac{m^2-n^2}{4}\right)\)
Ta có:
\(A=\left(a+b+c\right)^3-4\left(a^3+b^3+c^3\right)-12abc\)
\(=\left(m+c\right)^3-4\left[m\left(n^2+\frac{m^2-n^2}{4}\right)+c^3\right]-3c\left(m^2-n^2\right)\)
\(=m^3+3m^2c+3mc^2+c^3-4mn^2-m^3+mn^2-4c^3-3m^2c+3n^2c\)
\(=3mc^2-3c^3-3mn^2+3n^2c\)
\(=3\left(mc^2-c^3-mn^2+n^2c\right)\)
\(=3\left[c^2\left(m-c\right)-n^2\left(m-c\right)\right]\)
\(=3\left(m-c\right)\left(c^2-n^2\right)=3\left(m-c\right)\left(c-n\right)\left(c+n\right)\)
Do đó, \(A=3\left(a+b-c\right)\left(c-a+b\right)\left(c+a-b\right)\)
(a+b+c)^3-4(a^3+b^3+c^3) - 12abc
Phân tích đa thức thanh nhân tử
Ta có : \(\left(a+b+c\right)^3-4\left(a^3+b^3+c^3\right)-12abc\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)-4\left(a^3+b^3+c^3\right)-12abc\)
\(=-3\left(a^3+b^3+c^3\right)+3\left(a+b\right)\left(a+c\right)\left(b+c\right)-12abc\)
\(=-3\left[a^3+b^3+c^3-\left(a+b\right)\left(a+c\right)\left(b+c\right)+4abc\right]\)
\(=-3\left(a^3+b^3+c^3-c^2b-c^2a-b^2c-a^2c-ab^2-6abc\right)\)
\(=-3\left(c-b-a\right)\left(c-b+a\right)\left(c+b-a\right)\)