Cho tam giác cân ABC ( AB = AC), kẻ đường cao AH (H thuộc BC)
a) CMR: HB = HC ; góc BAH = góc CAH
b) Từ H kẻ HD vuông góc AB (D thuộc AB), kẻ HE vuông góc AC (E thuộc AC). CMR: AD = AE ; tam giác HDE cân
c) Giả sử AB = 10cm, BC = 16cm. Hãy tính AH
Cho tam giác cân ABC ( AB = AC), kẻ đường cao AH (H thuộc BC)
a) CMR: HB = HC ; góc BAH = góc CAH
b) Từ H kẻ HD vuông góc AB (D thuộc AB), kẻ HE vuông góc AC (E thuộc AC). CMR: AD = AE ; tam giác HDE cân
c) Giả sử AB = 10cm, BC = 16cm. Hãy tính AH
999 - 888 - 111 + 111 - 111 + 111 - 111
= 111 - 111 + 111 -111 + 111 - 111
= 0 + 111 - 111 + 111 - 111
= 111 - 111 + 111 - 111
= 0 + 111 - 111
= 111 - 111
= 0
Đáp số: 0
Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC). a, Chứng minh HB=HC b, Tính độ dài AH. c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng minh tam giác HDE cân. d, CM: AH là đường trung trực của đoạn thẳng DE ( giúp mk vs mai mk phải nộp rồi)
a.ta có trong tam giác cân ABC đường cao cũng là đường trung tuyến => HB = HC
b.áp dụng định lý pitago ta có:
\(AB^2=AH^2+HB^2\)
\(5^2=AH^2+\left(8:2\right)^2\)
\(AH=\sqrt{5^2-4^2}=3cm\)
c.Xét tam giác vuông BHD và tam giác vuông CHE, có:
BH = CH ( cmt )
góc B = góc C ( ABC cân )
Vậy tam giác vuông BHD = tam giác vuông CHE
=> HD = HE
=> HDE cân tại H
d.ta có AB = AD + DB
AC = AE + EC
Mà BD = CE ( 2 cạnh tương ứng của 2 tam giác bằng nhau )
=> AD = AE
=> ADE cân tại A
Mà A là đường cao cũng là đường trung trực trong tam giác cân ABC cũng là đường trung trực của tam giác cân ADE ( cmx )
Chúc bạn học tốt !!!!
Cho tam giác cân ABC (AB=AC), kẻ đường cao AH (H thuộc BC)
a) Chứng minh rawnhf: HB=HC Và góc BAH = góc CAH
b)Từ H kẻ HD vuông góc AB, kẻ HE vuông góc với AC
Chứng minh ràng AD = AE và tam giác HDE là tam giác cân
a/ Xét tam giác AHB và tam giác AHC có:
AH chung
Góc AHB=AHC=90o
Góc ABC=ACB(Tam giác ABC cân tại A)
=> Tam giác AHB=tam giác AHC(ch-gn)
=> HB=HC(cạnh tương ứng) và Góc BAH=CAH(góc tương ứng)
b/ Xét tam giác AHD và tam giác AHE có:
AH chung
ADH=AEH=900
DAH=EAH(Góc tương ứng của tam giác AHB=tam giác AHC)
=> Tam giác AHD=tam giác AHE(ch-gn)
=> AD=AE(cạnh tương ứng) và DH=HE(cạnh tương ứng)
=> Tam giác HDE cân tại H.
Cho tam giác ABC cân tại A có AB=AC=5cm, BC=8cm kẻ đường cao AH
1 chứng minh HB=HC và góc BAH=CAH
2 tính AH
3 kẻ HD vuông gócAB( DC thuộc AB) , HE vuông góc AC (E thuộc AC). Chứng minh tam giác HDE cân
a) Tam giác ABC cân tại A có AH là đường cao nên AH đồng thời là đường trung tuyến
=> HB = HC
Xét 2 tgiac vuông: tam giác ABH và tam giác ACH có:
AB = AC (gt)
HB = HC (cmt)
suy ra: tam giác ABH = tam giác ACH (ch_cgv)
=> góc BAH = góc CAH
2) HB = HC = 1/2 BC = 4cm
Áp dụng Pytago ta có:
AH2 + HB2 = AB2
=> AH2 = AB2 - HB2 = 9
=> AH = 3
3) Xét 2 tam giác vuông: tam giác HDB và tam giác HEC có:
BH = CH (cmt)
góc DBH = góc ECH (gt)
suy ra: tam giác HDB = tam giác HEC (ch_gn)
=> HD = HE
=> tam giác HDE cân tại H
.Cho tam giác ABC cân tại A. Kẻ AH là phân giác góc BAC ( H thuộc BC). Bài3: a, CM: HB = HC b, Kẻ HD vuông góc AB (D thuộc AB), kẻ HE vuông góc AC ( E thuộc AC).CM: A HDE cân. c) CM: DE// BC d) CM: AH là trung trực của DE e) Qua C kẻ đường thẳng//AB cắt DH tại K . CM: Tam giác CEK cân
a: Ta có: ΔABC cân tại A
mà AH là đường phân giác
nên H là trung điểm của BC
hay BH=CH
b: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
Suy ra: HD=HE
hay ΔHDE cân tại H
c: Xét ΔABC có
AD/AB=AE/AC
Do đó: DE//BC
cho tam giác ABC cân tại A, kẻ đường cao AH (H thuộc BC)
a/ chứng minh : tam giác AHB= tam giác AHC
b/chứng minh : HB=HC và góc BAH=góc CAH
c/ cho BC=20cm, AB = 8cm.tính độ dài đoạn thẳng AH
d/ kẻ HD vuông góc AB (D thuộc AB), HE vuông góc AC ( E thuộc AC). chứng minh rằng tam giác HDE là tam giác cân
e/ chứng minh rằng DE//BC
Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm. Kẻ AH vuông góc với BC (H thuộc BC).
a. Chứng minh HB = HC và góc BAH = góc CAH
b. Kẻ HD vuông góc với AB(D thuộc AB) Kẻ HE vuông góc với Ac (E thuộc AC). Chứng minh tam giác HDE là tam giác cân
a) Xét hai tam giác vuông $AHB$ và $AHC$ có:
$AH$ là cạnh chung;
$AB = AC$ (gt);
Suy ra $\Delta AHB=\Delta AHC$ (cạnh huyền - cạnh góc vuông)
Suy ra $HB = HC$ (Hai cạnh tương ứng)
$\widehat{BAH} = \widehat{CAH}$ (hai góc tương ứng).
b) Xét hai tam giác vuông $ADH$ và $AEH$ có:
$AH$ là cạnh chung;
$\widehat{BAH} = \widehat{CAH}$ (cmt);
Suy ra $\Delta ADH=\Delta AEH$ (cạnh huyền - góc nhọn).
Suy ra $HD = HE$ (Hai cạnh tương ứng) nên $\Delta HDE$ cân tại $H$.
Cho tam giác cân ÁC , kẻ đường cao AH (H thuộc BC)
A, cm HB= HC và tam giác BAH= tam giác CAO
B, từ H kẻ HD vuông góc AB ( D thuộc AB) , kẻ HE vuông góc với AC( E vuông góc với AC)
Cm: AD=AE và tam giác HDE là tam giác cân
C, giả sử AB = 10cm, BCh 16cm. Hãy tính độ dài AH
Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC).
a, Chứng minh HB=HC
b, Tính độ dài AH.
c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng
minh tam giác HDE cân.
d, So sánh HD và HC.
Xét tam giác ABH và tam giác ACH
AB=AC(GT)
^AHB=^AHC=90o
^ABH=^ACH ( TAM GIÁC ABC CÂN TẠI A)
=> tam giác ABH = tam giác ACH
=> HB=HC ( 2c tứ)
có HB+HC=BC
mà BC=8 cm
HB=HC
=> HB=HC=4cm
Xét tam giác ABH : ^H=90o
=> AB2+AH2+BH2(đ/lý pythagoras)
thay số ta có :
52=AH2+42
25-16=AH2
9=AH2
3=AH
c)Xét tam giác BDH và tam giác ECH
^BDH= ^ HEC =90o
BH=CH
^DBH=^ECH ( TAM GIÁC ABC CÂN TẠI A)
=> tam giác BDH = tam giác ECH
=> DH=EH
=> HDE CÂN TẠI H (Đ/N)
d) qua tia đối của DH ; kẻ HK sao cho HK= DH
CÓ : tam giác HCK có cạnh HK là cạnh lớn nhất ( cạnh huyền) => HK > HC
mà HD=HK
=> HD>HC