Những câu hỏi liên quan
H24
Xem chi tiết
H24
Xem chi tiết
PV
Xem chi tiết
PB
Xem chi tiết
CT
23 tháng 2 2017 lúc 3:37

Giải bài 15 trang 119 Toán 8 Tập 1 | Giải bài tập Toán 8

a) Hình chữ nhật ABCD đã cho có diện tích là SACBD = 3.5 = 15 (cm2)

Hình chữ nhật có kích thước là 1cm x 12cm có diện tích là 12cm2 và chu vi là (1 + 12).2 = 26 (cm) (có 26 > 15)

Hình chữ nhật kích thước 2cm x 7cm có diện tích là 14cm2 và chu vi là (2 + 7).2 = 18 (cm)

(có 18 > 15).

Như vậy, vẽ được nhiều hình chữ nhật có diện tích bé hơn nhưng có chu vi lớn hơn hình chữ nhật ABCD cho trước.

Giải bài 15 trang 119 Toán 8 Tập 1 | Giải bài tập Toán 8

b) + Chu vi hình chữ nhật ABCD đã cho là (5 + 3).2 = 16 cm

Cạnh hình vuông có chu vi bằng chu vi hình chữ nhật ABCD là: 16 : 4 = 4 cm

Diện tích hình vuông này là 4.4 = 16 cm2

(Ở trên hình là ví dụ hình vuông MNPQ có cạnh là 4cm)

Vậy SHCN < SHV

+ Trong các hình chữ nhật có cùng chu vi thì hình vuông có diện tích lớn nhất.

Gọi cạnh của hình chữ nhật có độ dài lần lượt là a, b.

Hình vuông có cùng chu vi với hình chữ nhật nên cạnh hình vuông là Giải bài 15 trang 119 Toán 8 Tập 1 | Giải bài tập Toán 8

Giải bài 15 trang 119 Toán 8 Tập 1 | Giải bài tập Toán 8

⇒ Hình vuông có diện tích lớn nhất.

Bình luận (0)
H24
Xem chi tiết
SK
Xem chi tiết
NH
27 tháng 5 2017 lúc 11:09

Căn bậc hai. Căn bậc ba

Bình luận (0)
SK
Xem chi tiết
NL
21 tháng 4 2017 lúc 21:13

a) Hình chữ nhật ABCD đã cho có diện tích là SACBD = 3.5 = 15 (cm2).

- Hình chữ nhật có kích thước 1cm x 12cm có diện tích là 12cm2 và chu vi là ( 1+12).2 = 26(cm) (có 26>15).

- Hình chữ nhật có kích thước 2cmx7cm co diện tích là 14cm2 và chu vi là (2+7).2 = 18(cm) (có 18 > 15).

Như vậy, vẽ được nhiều hình chữ nhật có diện tích bé hơn nhưng có chu vi lớn hơn hình chữ nhật ABCD cho trước.

b) Chu vi hình chữ nhật ABCD đã cho là:

(5+3).2 = 16 (cm)

Cạnh hình vuông có chu vi bằng chu vi hình chữ nhật ABCD là:

16:4 = 4(cm).

Diện tích hình vuông này là 4.4 = 16 (m2)

Vậy Shcn < Shv

Trong các hình chữ nhật có cùng chu vi thì hình vuông có diện tich lớn nhất.

Ta luôn có ≥ √ab

Suy ra ab ≤ .

Hình trên là hình vẽ chứng tỏ hình chữ nhật cạnh a,b (a>b) có diện tích nhỏ hơn diện tích hình vuông cạnh .

Trên hình a= 5cm, b = 3cm, = 4cm

a - = 1cm, - b = 1cm

Do đó

SEBCG = b. ( a- ) = 3.1 = 3 (cm2).

SDGHI = . ( - b ) = 4.1 = 4 (cm2).

SAEGD = b. = 3.4 = 12 (cm2).

Nên SABCD = SEBCG + SAEGD = 3 + 12 = 15(cm2).

SAEHI = SDGHI + SAEGD = 4 + 12 = 16 (cm2).

Vậy SABCD < SAEHI

Tổng quát:

Hình chữ nhật EBCG có một cạnh bằng a - , cạnh kia bằng b.

Hình chữ nhật DGHI có một cạnh bằng - b, cạnh kia bằng .

Mà a - bằng - b và b < ( theo giả thiết a> b)

nên SEBCG < SDGHI

Cộng thêm SAEGD vào mỗi vế bất đẳng thức ta được

SEBCG + SAEGD < SDGHI + SAEGD

Vậy SABCD < SAEHI

Bình luận (0)
NH
21 tháng 4 2017 lúc 21:13

Hướng dẫn giải:

a) Hình chữ nhật ABCD đã cho có diện tích là SACBD = 3.5 = 15 (cm2).

- Hình chữ nhật có kích thước 1cm x 12cm có diện tích là 12cm2 và chu vi là ( 1+12).2 = 26(cm) (có 26>15).

- Hình chữ nhật có kích thước 2cmx7cm co diện tích là 14cm2 và chu vi là (2+7).2 = 18(cm) (có 18 > 15).

Như vậy, vẽ được nhiều hình chữ nhật có diện tích bé hơn nhưng có chu vi lớn hơn hình chữ nhật ABCD cho trước.

b) Chu vi hình chữ nhật ABCD đã cho là:

(5+3).2 = 16 (cm)

Cạnh hình vuông có chu vi bằng chu vi hình chữ nhật ABCD là:

16:4 = 4(cm).

Diện tích hình vuông này là 4.4 = 16 (m2)

Vậy Shcn < Shv

Trong các hình chữ nhật có cùng chu vi thì hình vuông có diện tich lớn nhất.

Ta luôn có ≥ √ab

Suy ra ab ≤ .

Hình trên là hình vẽ chứng tỏ hình chữ nhật cạnh a,b (a>b) có diện tích nhỏ hơn diện tích hình vuông cạnh .

Trên hình a= 5cm, b = 3cm, = 4cm

a - = 1cm, - b = 1cm

Do đó

SEBCG = b. ( a- ) = 3.1 = 3 (cm2).

SDGHI = . ( - b ) = 4.1 = 4 (cm2).

SAEGD = b. = 3.4 = 12 (cm2).

Nên SABCD = SEBCG + SAEGD = 3 + 12 = 15(cm2).

SAEHI = SDGHI + SAEGD = 4 + 12 = 16 (cm2).

Vậy SABCD < SAEHI

Tổng quát:

Hình chữ nhật EBCG có một cạnh bằng a - , cạnh kia bằng b.

Hình chữ nhật DGHI có một cạnh bằng - b, cạnh kia bằng .

Mà a - bằng - b và b < ( theo giả thiết a> b)

nên SEBCG < SDGHI

Cộng thêm SAEGD vào mỗi vế bất đẳng thức ta được

SEBCG + SAEGD < SDGHI + SAEGD

Vậy SABCD < SAEHI



Bình luận (0)
TM
21 tháng 4 2017 lúc 21:13

a) Hình chữ nhật ABCD đã cho có diện tích là SACBD = 3.5 = 15 (cm2).

- Hình chữ nhật có kích thước 1cm x 12cm có diện tích là 12cm2 và chu vi là ( 1+12).2 = 26(cm) (có 26>15).

- Hình chữ nhật có kích thước 2cmx7cm co diện tích là 14cm2 và chu vi là (2+7).2 = 18(cm) (có 18 > 15).

Như vậy, vẽ được nhiều hình chữ nhật có diện tích bé hơn nhưng có chu vi lớn hơn hình chữ nhật ABCD cho trước.

b) Chu vi hình chữ nhật ABCD đã cho là:

(5+3).2 = 16 (cm)

Cạnh hình vuông có chu vi bằng chu vi hình chữ nhật ABCD là:

16:4 = 4(cm).

Diện tích hình vuông này là 4.4 = 16 (m2)

Vậy Shcn < Shv

Trong các hình chữ nhật có cùng chu vi thì hình vuông có diện tich lớn nhất.

Ta luôn có ≥ √ab

Suy ra ab ≤ .

Hình trên là hình vẽ chứng tỏ hình chữ nhật cạnh a,b (a>b) có diện tích nhỏ hơn diện tích hình vuông cạnh .

Trên hình a= 5cm, b = 3cm, = 4cm

a - = 1cm, - b = 1cm

Do đó

SEBCG = b. ( a- ) = 3.1 = 3 (cm2).

SDGHI = . ( - b ) = 4.1 = 4 (cm2).

SAEGD = b. = 3.4 = 12 (cm2).

Nên SABCD = SEBCG + SAEGD = 3 + 12 = 15(cm2).

SAEHI = SDGHI + SAEGD = 4 + 12 = 16 (cm2).

Vậy SABCD < SAEHI

Tổng quát:

Hình chữ nhật EBCG có một cạnh bằng a - , cạnh kia bằng b.

Hình chữ nhật DGHI có một cạnh bằng - b, cạnh kia bằng .

Mà a - bằng - b và b < ( theo giả thiết a> b)

nên SEBCG < SDGHI

Cộng thêm SAEGD vào mỗi vế bất đẳng thức ta được

SEBCG + SAEGD < SDGHI + SAEGD

Vậy SABCD < SAEHI

Bình luận (0)
MT
Xem chi tiết
PT
21 tháng 7 2017 lúc 15:04

Ta có bất đẳng thức Cauchy với 2 số a,b không âm :\(\frac{a+b}{2}\ge\sqrt{ab}\)

a)Gọi độ dài 2 cạnh liên tiếp của hình chữ nhật là a,b->a+b=k không đổi

->Shcn=ab\(\le\frac{\left(a+b\right)^2}{4}\)=\(\frac{k^2}{4}\)

Dấu "=" xảy ra <=>a=b<=> hình vuông

b)Gọi độ dài 2 cạnh liên tiếp của hình chữ nhật là a,b->ab=k không đổi

Chu Vi HCN=2(a+b)\(\ge\)\(4\sqrt{ab}\)=4\(\sqrt{k}\)

Dấu "=" xảy ra <=> a=b <=>Hình vuông

Bình luận (0)
CY
Xem chi tiết
HD
19 tháng 1 2020 lúc 15:13

gọi chiều dài là x, rộng là y (x,y>0)

ta có x+y=\(\frac{P}{2}\); x.y = S

áp dụng BĐT cosi  ta được: S= \(xy\le\left[\frac{\left(x+y\right)}{2}\right]^2=\frac{p^2}{16}\)

vậy Smax =\(\frac{P^2}{16}\) dấu đẳng thức xảy ra <=> x=y (hình vuông)

Bình luận (0)
 Khách vãng lai đã xóa