tìm x,y,z biết chúng là các số hữu tỉ biết x.y=-3 ;y.z=2 và z.x=-6
tìm các số hữu tỉ x,y,z biết
a) x.y =\(\frac{2}{3}\); y.z = 0,6 ; z.x = 0,625
b) x(x-y+z) = -11 ; y(y-z-x) = 25 ; z(z+x-y) = 35
\(\left(xy\right):\left(yz\right)=\frac{2}{3}:0,6\Rightarrow\frac{x}{z}=\frac{10}{9}\)=> \(x=\frac{10}{9}z\Rightarrow\frac{10}{9}z.z=0,625\Rightarrow z^2=\frac{9}{16}\Rightarrow z=\pm\frac{3}{4}\)
\(\left(yz\right):\left(zx\right)=0,6:0,625\Rightarrow\frac{y}{x}=\frac{24}{25}\)
Với z=3/4 => x, y
Với z=-3/4 => x,y
Câu b làm tương tự nhé :)
Câu 1: Tìm các số hữu tỉ x.y thỏa mãn điều kiện:
a) x+ y = x.y = x:y
b) x-y = x.y = x:y
câu 2: CHo x, y, z là các số hữu tỉ khác 0 (CHứng minh)
a)x. (y.z) = x : y : z
b) (x . y) : z + (x : z) . y = x. (y.z)
GIÚP MK VS NHEN MẤY BN!!!
1/ a/ x = 1/2, y = -1
b/ x = -1/2 ; y = 1
Tìm các số hữu tỉ x,y,z biết các số thỏa mãn các điều kiện:
\(x.y=\frac{1}{3};y.z=-\frac{2}{5};x.z=-\frac{3}{10}\)
\(\Rightarrow xy.yz.xz=\left(xyz\right)^2=\frac{1}{3}.\frac{-2}{5}.\frac{-3}{10}=\frac{1}{25}\Rightarrow xyz=\frac{1}{5};\frac{-1}{5}\)
xét xyz=-1/5=>x=1/2;y=2/3;z=-3/5
xét xyz=1/5=>x=-1/2;y=-2/3;z=3/5
Vậy (x;y;z)=(1/2;2/3;-3/5);(-1/2;-2/3;3/5)
Bài 1: tìm các số nguyên x và y biết rằng:
\(\frac{x}{4}-\frac{1}{y}=\frac{1}{2}\)
bài 2: tìm hai số hữu tỉ x và y sao cho
x-y=x.y=x:y (y khác 0 )
bài 3 : tìm các số hữu tỉ x;y;z biết rằng
x(x+y+z)=-5; y(x+y+z)=9; z(x+y+z)=5
bài 4: người ta viết năm số hữu tỉ trên 1 vòng tròn, trong đó tích hai số cạnh nhau luôn bằng \(\frac{1}{4}\). tìm các số đó
Bài 2 :
Ta có : x - y = xy => x = xy + y = y ( x + 1 )
=> x : y = x + 1 ( vì y khác 0 )
Ta có : x : y = x - y => x + 1 = x - y => y = -1
Thay y = -1 vào x - y = xy , ta được x - (-1) = x (-1) => 2x = -1 => x = -1/2
Vậy x = -1/2 ; y = -1
Ta có : x - y = xy => x = xy + y = y ( x + 1 )
=> x : y = x + 1 ( vì y khác 0 )
Ta có : x : y = x - y => x + 1 = x - y => y = -1
Thay y = -1 vào x - y = xy , ta được x - (-1) = x (-1) => 2x = -1 => x = -1/2
Vậy x = -1/2 ; y = -1
Tìm các số hữu tỉ x,y biết:
x+y=x.y=x:y
\(x+y=xy=\frac{x}{y}\)
Điều kiện: \(y\ne0\)
Nếu x = 0 thì 0 + y = 0 => y = 0 trái điều kiện => \(x\ne0\)\(x\ne0\)thì từ: \(xy=\frac{x}{y}\Rightarrow y^2=1\Rightarrow\orbr{\begin{cases}y=1\\y=-1\end{cases}}\)y = 1 thì \(x+y=xy\Rightarrow x+1=x\)không có x thỏa mãny = -1 thì \(x+y=xy\Rightarrow x-1=-x\Rightarrow2x=1\Rightarrow x=\frac{1}{2}\)Nghiệm duy nhất là: (x = 1/2; y = -1).
1. Cho tỉ lệ thức x/3 = y/4 và x.y = 12. Tìm x, y
2. Cho ba số x, y, z thỏa mãn x.y = -30; y.z = 42 và z-x = -12. Tính x, y, z
3.Tìm hai số x và y, biết: x/3 = y/-5 và x-y = 16
Cảm ơn các bạn
\(x-y=-30\Rightarrow\dfrac{x}{-30}=\dfrac{1}{y}\\ y.z=-42\\ \Rightarrow\dfrac{z}{-42}=\dfrac{1}{y}\\ \Rightarrow\dfrac{x}{-30}=\dfrac{z}{-42}\)
Áp dụng TCDTSBN ta có:
\(\dfrac{x}{-30}=\dfrac{z}{-42}=\dfrac{z-x}{-42-\left(-30\right)}=\dfrac{-12}{-12}=1\)
\(\dfrac{x}{-30}=1\Rightarrow x=-30\\ \dfrac{z}{-42}=1\Rightarrow z=-42\)
\(x.y=-30\Rightarrow-30.y=-30\Rightarrow y=1\)
tìm các số hữu tỉ x,y,z thỏa mãn điều kiện: x.y=1/3; y.z=-2/5; x.z=-3/10
ta có
x.y.y.z.x.z =1/3.(-2/5).(-3/10)=1/25
nên (x.y.z)^2 =1/25
+) x.y.z=1/5 nên x= 1/5:1/3=3/5
y=1/5:(-2/5)=-1/2
z=1/5:(-3/10)=-2/3
+)x.y.z = -1/5 nên x=-1/5 :1/3 =-3/5
y= -1/5:(-2/5) =1/2
z=-1/5:(-3/10)=2/3.
sau đó bạn tự kết luận nhé
Từ đề bài ta có: \(\left(x.y.z\right)^2=\frac{1}{3}.\frac{-2}{5}.\frac{-3}{10}=\frac{1}{25}\Rightarrow\orbr{\begin{cases}xyz=\frac{1}{5}\\xyz=-\frac{1}{5}\end{cases}}\)
Với \(xyz=\frac{1}{5}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{2}{3}\\z=\frac{3}{5}\end{cases}}\)
Với \(xyz=\frac{-1}{5}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{3}\\z=\frac{-3}{5}\end{cases}}\)
1 . Tìm số hữu tỉ x,y,z biết :(xϵZ)
a.2x+x+y=83
b. 3.(x+y)=x.y=x/y
c.3x+17y=159(x,y ϵ N*)
tìm các số hữu tỉ x ,y,z thảo mãn
x.y=-2/5 ; y.z=3/4 ; z.x=-3/10
\(\Rightarrow\left(x.y.z\right)^2=\frac{-2}{5}.\frac{3}{4}.\frac{-3}{10}\)
\(\Rightarrow\left(x.y.z\right)^2=\frac{18}{200}=\frac{9}{100}\)
\(\Rightarrow x.y.z=\frac{3}{10}\)
\(\Rightarrow z=\frac{3}{-4}\)
\(\Rightarrow x=\frac{2}{5}\)
\(\Rightarrow y=-1\)