Chứng minh: S=3^103+3^102-3^101 chia hết cho 33
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho A=3^101 + 3^102 +3^103 + ..... + 3^200
CMR : A chia hết cho 120
\(A=3^{101}+3^{102}+3^{103}+...+3^{200}\)
\(3A=3^{102}+3^{103}+3^{104}+...+3^{201}\)
\(3A-A=\left(3^{102}+3^{103}+3^{104}+3^{201}\right)-\left(3^{101}+3^{102}+3^{103}+...+3^{201}\right)\)
\(2A=3^{201}-3^{101}\)
\(2A=3^{100}\)
\(\Rightarrow A=3^{100}:2\)
\(A=3^{101}+3^{102}+3^{103}+...+3^{200}\)
\(A=3^{101}+3^{102}+3^{103}+3^{104}+...+3^{197}+3^{198}+3^{199}+3^{200}\)
\(A=3^{100}\left(3+3^2+3^3+3^4\right)+...+3^{196}\left(3+3^2+3^3+3^4\right)\)
\(A=120\left(3^{100}+...+3^{196}\right)⋮120\)
1/tìm số tự nhiên nhỏ nhất biết rằng số đó chia cho9 dư 5,chia 5 dư 3,chia 7 dư 4
2/cho S=2^1+2^+2^3+...+2^100
A,chứng minh rằng Schia hết cho 15
B,tìm số tận cùng của S
C,tính tổng S
3/chứng minh rằng
A,1-1/2+1/3-/4+...+1/199-/200=1/101+1/102+1/103+...+1/200
B,51/2*52/2*...*100/2=1*3*5*99
các bạn giúp mình nha!ai trả lời trước mình tick
1)Ta thấy nếu số đó công với 4 thì chia hết cho cả 3 số
Gọi số phải tìm là A
Ta có A + 4 chia hết cho 5 , 7 , 9
Mà A nhỏ nhất nên A + 4 = 5 . 7 . 9 = 315
Do đó A = 315 - 4 = 311
2)a)Ta có S = 2^1 + 2^2 +2^3 +...+ 2^100
S = ( 2^1 + 2^2 + 2^3 +2^4 ) +...+( 2^97 + 2^98 + 2^99 + 2^100 )
S = 1( 2^1 + 2^2 + 2^3 + 2^4 ) +...+ 2^96( 2^1 + 2^2 + 2^3 + 2^4 )
S = 1.30 +...+2^96.30
S = ( 1 +...+2^96 )30
Vì 30 chia hết cho 15 nên ( 1 +...+2^96 )30 chia hết cho 15
Hay S chia hết cho 15
b) Vì S cha hết cho 30 nên S chia hết cho 10
Suy ra S có tận cùng là 0
c) S = 2^1 + 2^2 + 2^3 +...+2^100
2S = 2^2 + 2^3 + 2^4 +...+ 2^101
2S - S =( 2^2 + 2^3 +...+ 2^101 ) - ( 2^1 + 2^2 + ... + 2^100 )
S = 2^101 - 2^1
S = 2^101 - 2
1. 158
2a. 0 ( doan nha )
b.S = ( 2 + 2^2 +2^3+2^4) + ( 2^5 + 2^6 + 2^7 + 2^8 ) +...+ ( 2^97 + 2^ 98 + 2^99 +2^100 )
= 2.( 1+2+2^2+2^3 ) + 2^5. ( 1+2+2^2+2^3)+2^97.( 1+2+2^2+2^3)
= 2.15+2^5.15+...+2^97.15
= 15.(2+2^5+...+2^97) chia het 15
c.2^101-2^1
3. chiu !
Ta thấy A gồm có 99 số hạng nên ta nhóm mỗi nhóm 3 số hạng.
Ta có: A = 1 + 5 + 52 + 53 + 54 + 55 +...+ 597 + 598 + 599
= (1 + 5 + 52 )+ (53 + 54 + 55 )+...+( 597 + 598 + 599 )
=(1 + 5 + 52 )+ 53(1 + 5 + 52 ) +...+ 597(1 + 5 + 52 )
= ( 1 + 5 + 52)(1 + 53+....+597)
= 31(1 + 53+....+597)
Vì có một thừa số là 31 nên A chia hết cho 31.
P/s Đừng để ý câu trả lời của mình
Giúp mình 5 câu này nhé . Ai làm đc cả 5 câu cho 10 điểm luôn ( Nếu đúng )
1/Cho A= 1/101+1/102+1/103+...+1/150
a) So sánh 1/150 với 1/101;...; 1/150 với 1/149 <----------------KO PHẢI LÀM
b) Chứng minh : A > 1/3
2/ Cho A= 1/101+1/102+1/103+...+1/200
a) So sánh: 1/101+1/102+...+1/150với 1/3 và 1/151+1/152+...+1/200 với 1/4
b) Chứng minh: A > 7/12
3/Cho A= 1/101+1/102+...+1/200
Chứng minh: 1/2 < A < 1
4/ Cho A = 1/101+1/102+1/103+...+1/150. Chứng minh: 1/3 < A < 1/2
5/ Chứng minh: 1/5+1/14+1/28 < 1/3
CHÚC CÁC BẠN THÀNH CÔNG
CÁC BẠN CHỈ CẦN GIÚP MÌNH ÍT NHẤT 2 CÂU THÔI
j mà nhìu zu zậy làm bao giờ mới xong
chứng minh rằng a=3+3 mũ 2+3 mũ 3+3 mũ 4+...+3 mũ 101+3 mũ 102 chia hết cho 13
Chứng minh rằng :
a) 7/12 <1/101+1/102+1/103+...+1/200 <1
b) 1/101+1/102+1/103+...+1/150>1/3
a ) Số lượng số của dãy số trên là :
\(\left(200-101\right):1+1=100\) ( số )
Do \(100⋮2\)nên ta nhóm dãy số trên thành 2 nhóm như sau :
\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}=\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}\right)\)
\(\frac{1}{101}>\frac{1}{150};\frac{1}{102}>\frac{1}{150};...;\frac{1}{149}>\frac{1}{150};\frac{1}{150}=\frac{1}{150}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}>\frac{1}{150}.50=\frac{1}{3}\left(1\right)\)
\(\frac{1}{151}>\frac{1}{200};\frac{1}{152}>\frac{1}{200};...;\frac{1}{199}>\frac{1}{200};\frac{1}{200}=\frac{1}{200}\)
\(\Rightarrow\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}>\frac{1}{200}.50=\frac{1}{4}\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{1}{3}+\frac{1}{4}=\frac{7}{2}\left(3\right)\)
\(\frac{1}{101}< \frac{1}{100};\frac{1}{102}< \frac{1}{100};...;\frac{1}{199}< \frac{1}{100};\frac{1}{200}< \frac{1}{100}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}< \frac{1}{100}.100=1\left(4\right)\)
Từ \(\left(3\right);\left(4\right)\Rightarrowđpcm\)
b ) Số lượng số dãy số trên là :
\(\left(150-101\right):1+1=50\)( số )
Ta có : \(\frac{1}{101}>\frac{1}{150};\frac{1}{102}>\frac{1}{150};\frac{1}{103}>\frac{1}{150};...;\frac{1}{150}=\frac{1}{150}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}>\frac{1}{150}.50=\frac{1}{3}\)
\(\Rightarrowđpcm\)
Cho A =1/101 + 1/102 + 1/ 103 +...+ 1/ 200
Chứng minh A<3/4
A = \(\frac{101+102+...+200}{101.102.....200}\)
Tử số = 15050
Mẫu số \(>\frac{4}{3}.15050\approx20067\)
=> A < 3/4.
bạn ơi vậy là lam mò rùi mình cần bai có khoa học nha
xin lỗi bạn
cho S=1/101+1/102+1/103+...1/200.chứng minh rằng 1/2<S<1
S=1/101+1/102+...+1/200
=>S>1/200+1/200+...+1/200=100/200=1/2
S=1/101+1/102+...+1/200
=>S<1/100+1/100+...+1/100=100/100=1
=>1/2<S<1
cho S=1/101+1/102+1/103+...1/200.chứng minh rằng 1/2<S<1
Ta có: S=1/101 > 1/200
1/102 > 1/200
1/103 > 1/200
........
1/199 > 1/200
1/200 = 1/200
=>1/101 +1/102 +1/103 +.... +1/199 +1/200 > 1/200 + 1/200 +1/200 +..... +1/200
=>1/101 + 1/102 +1/103 +..... +1/200 > 1/200x100 = 1/2
Vậy biểu thức đã cho S > 1/2
Cho A= 6/101+6/102+6/103+...+6/199+6/200. Chứng minh rằng 3<A<5