Những câu hỏi liên quan
LT
Xem chi tiết
DA
Xem chi tiết
H24
Xem chi tiết
H24
18 tháng 11 2018 lúc 11:58

\(A=x^2-6x+10\)

\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)

\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\)     \(\forall x\in z\)

\(\Leftrightarrow A_{min}=1khix=3\)

\(B=3x^2-12x+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\)    \(\forall x\in z\)

\(\Leftrightarrow B_{min}=-11khix=2\)

Bình luận (0)
MP
Xem chi tiết
TC
5 tháng 8 2021 lúc 9:25

Thật ra cách làm dạng bài này cũng gần giống như bài tìm gtnn bạn vừa hỏi, chỉ khác ở chỗ đặt dấu âm ra ngoài để tìm được gtln thôi. 

Bình luận (0)
TC
5 tháng 8 2021 lúc 9:35

undefined

Bình luận (0)
TC
5 tháng 8 2021 lúc 9:44

Bạn xem lại đề câu e nhé.

undefined

Bình luận (1)
HN
Xem chi tiết
H24
10 tháng 7 2021 lúc 9:35

undefined

Bình luận (0)
TT
Xem chi tiết
NT
1 tháng 7 2019 lúc 14:44

Tìm GTLN:

\(A=-x^2+6x-15\)

\(=-\left(x^2-6x+15\right)\)

\(=-\left(x^2-2.x.3+9+6\right)\)

\(=-\left(x+3\right)^2-6\le0\forall x\)

Dấu = xảy ra khi: 

   \(x-3=0\Leftrightarrow x=3\)

Vậy Amax = - 6 tại x = 3

Tìm GTNN :

\(A=x^2-4x+7\)

\(=x^2+2.x.2+4+3\)

\(=\left(x+2\right)^2+3\ge0\forall x\)

Dấu = xảy ra khi:

   \(x+2=0\Leftrightarrow x=-2\)

Vậy Amin = 3 tại x = - 2

Các câu còn lại làm tương tự nhé... :)

Bình luận (0)
TT
2 tháng 7 2019 lúc 15:35

giải hết i

Bình luận (0)
TT
Xem chi tiết
LS
Xem chi tiết
TC
5 tháng 8 2021 lúc 9:38

undefined

Bình luận (0)
TC
5 tháng 8 2021 lúc 9:42

Bạn xem lại đề câu e nhé.

undefined

Bình luận (0)
NN
Xem chi tiết
DL
31 tháng 1 2022 lúc 15:21

là \(4x+\dfrac{1}{x^2}+2x+2\)  hay là \(\dfrac{4x+1}{x^2+2x+2}\) cái neog:0

Bình luận (1)
XO
31 tháng 1 2022 lúc 16:11

\(P=\dfrac{4x+1}{x^2+2x+2}=\dfrac{x^2+2x+2-x^2+2x-1}{x^2+2x+2}=1-\dfrac{\left(x-1\right)^2}{x^2+2x+2}\le1\)

"=" xảy ra <=> x - 1 = 0 <=> x = 1

Vậy Max P = 1 <=> x = 1

P = \(\dfrac{4x+1}{x^2+2x+2}=\dfrac{-4x^2-8x-8+4x^2+12x+9}{x^2+2x+2}=-4+\dfrac{\left(2x+3\right)^2}{x^2+2x+2}\)

\(\ge-4\)

"=" xảy ra <=> 2x + 3 = 0 <=> x = -1,5

Vậy Min P = -4 <=> x = -1,5

Bình luận (0)