Trong mặt phẳng cho 3 điểm A(1;2), B(3;4), C(-1;3). Hãy viết phương trình đường thẳng \(\Delta\) đi qua C và cách đều A,B
Bài 1 : tìm m để 3 điểm A( 2 ; -1 ) , B ( 1 ; 1 ) , C ( 3 ; m+1 ) trong mặt phẳng Oxy thẳng hàng .
Bài 2 : trong mặt phẳng Oxy cho A ( 1; 2 ) , B ( 3 ; 4 ) . tìm điểm M thuộc Ox sao cho MA + MB đạt giá trị nhỏ nhất .
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x + 2y + 2z + 4 = 0 và điểm A(1;-2; 3). Tính khoảng cách từ điểm A đến mặt phẳng (P).
A. 7 3
B. 2
C. 14 2
D. 1
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng α : 2 x - 2 y + z - 3 = 0 và điểm M(1;-2;13). Tính khoảng cách từ điểm M đến mặt phẳng (a).
Cho mặt phẳng (P) đi qua các điểm A − 2 ; 0 ; 0 , B 0 ; 3 ; 0 , C 0 ; 0 ; − 3 . Mặt phẳng (P) vuông góc với mặt phẳng nào trong các mặt phẳng sau?
A. x + y + z + 1 = 0
B. x − 2 y − z − 3 = 0
C. 2 x + 2 y − z − 1 = 0
D. 3 x − 2 y + 2 z + 6 = 0
Đáp án là C.
+ VTPT của (P) là: n → P = − 1 2 ; 1 3 ; − 1 3
+ Ta thấy n → P . n → 3 = 0 , n → 3 = 2 ; 2 ; − 1
Trong không gian Oxyz cho điểm A (1;2;-3) và mặt phẳng (P): 2x + 2y - z + 9 = 0 Đường thẳng d đi qua A vuông góc với mặt phẳng (Q): 3x + 4y - 4z + 1 = 0 và cắt mặt phẳng (P) tại điểm B. Điểm M nằm trong (P) sao cho M luôn nhìn AB dưới góc vuông. Tính độ dài lớn nhất của MB
A. 41 2
B. 5 2
C. 5
D. 41
Trong không gian Oxyz, cho điểm A(-1 ;-3 ;2) và mặt phẳng (P) : x-2y-3z-4=0 Đường thẳng đi qua điểm A và vuông góc với mặt phẳng (P) có phương trình là
A. x - 1 - 1 = y - 3 2 = z + 2 3
B. x - 1 - 1 = y - 3 2 = z + 2 - 3
C. x - 1 - 1 = y - 2 - 2 = z + 3 - 3
D. x - 1 - 1 = y + 3 - 2 = z - 2 - 3
Trong không gian Oxyz,cho điểm A - 1 ; 2 ; 1 và mặt phẳng P : 2 x - y + z - 3 = 0 . Gọi (Q) là mặt phẳng đi qua A và song song với mặt phẳng (P). Điểm nào sau đây không thuộc mặt phẳng (Q)?
A. K(3;1;-8)
B. N(2;1;-1)
C. I(0;2;-1)
D. M(1;0;-5)
Trong không gian Oxyz, cho điểm A(1;2;-3) và mặt phẳng (P) có phương trình x - 2y + 2z + 1 = 0. Khoảng cách từ A đến mặt phẳng (P) là:
A. 8 3
B. - 8 3
C. 8 9
D. 8
Trong không gian với hệ toạ độ Oxyz, cho đường thẳng d : x = t y = - 1 + 2 t z = 1 và điểm A - 1 ; 2 ; 3 . Mặt phẳng (P) chứa đường thẳng (d) sao cho khoảng cách từ điểm A đến mặt phẳng (P) bằng 3 có vecto pháp tuyến là:
A. n ⇀ = 2 ; 1 ; - 3
B . n ⇀ = 2 ; 1 ; 2
C. n ⇀ = 2 ; - 1 ; - 2
D. n ⇀ = 4 ; - 2 ; 2
Cho mặt phẳng (P) đi qua các điểm A(-2;0;0),B(0;3;0),C(0;0;-3). Mặt phẳng (P) vuông góc với mặt phẳng nào trong các mặt phẳng sau: