Tìm số nguyên x, y biết: 1/8<x/12<y/9<1/4
a) tìm các số nguyên x y biết
(x-3)(xy-1)=7
b)tìm các số nguyên x y biết
y<0 và (x-3)×y=5
c)Tìm các Ư của A biết
A=1-4+5-8+9-12+...+27-30
d) tìm số nguyên x biết
(X-10)+(x-9)+(x-8)+...+(x-1)=-2015
tìm các số nguyên x,y biết:5/x+y/4=1/8
=>(20+xy)/4x=1/8
=>160+8xy=4x
=>x=2xy+40
=>x-2xy=40
=>x(1-2y)=40
=>(x;1-2y) thuộc {(40;1); (-40;-1); (8;5); (-8;-5)}
=>(x,y) thuộc {(40;0); (-40;1); (8;-2); (-8;3)}
5/x = 1/8 - y/4 = (1-2y)/8
<=> x = 5*8/(1-2y) ; thấy 1-2y là số lẻ nên UCLN(8,1-2y) = 1
do đó x/8 = 5/(1-2y) (*)
x, y nguyên khi 1-2y phải là ước của 5
* 1-2y = -1 => y = 1 => x = -40
* 1-2y = 1 => y = 0 => x = 40
* 1-2y = -5 => y = 3 => x = -8
* 1-2y = 5 => y = -2 => x = 8
vậy có 4 cặp (x,y) nguyên (-40,1) ; (40, 0) ; (-8, -5) ; (8, 5)
Bài 1: Tìm các số nguyên x,y biết:
(x-1)(y-7)=7
Bài 2:Tìm số nguyên x biết:
a) 8-lx+2l=5
b) lx+2l+2=-x
a) 8 - |x + 2| = 5
-|x + 2| = 5 - 8
-|x + 2| = -3
|x + 2| = 3
x + 2 = 3; -3
x + 2 = 3 hoặc x + 2 = -3
x = 3 - 2 x = -3 - 2
x = 1 x = -5
=> x = 1 hoặc x = -5
Tìm số nguyên x,y biết: \(\dfrac{5}{x}\)+\(\dfrac{y}{4}\)= \(\dfrac{1}{8}\)
\(\Leftrightarrow40+2xy=x\left(x\ne0\right)\)
\(\Leftrightarrow x\left(1-2y\right)=40\Leftrightarrow x=\dfrac{40}{1-2y}\)
Do 2y chẵn => 1-2y lẻ
Để x nguyên thì 1-2y là ước của 40
\(\Rightarrow1-2y=\left\{-5;-1;1;5\right\}\Rightarrow y=\left\{3;1;0;-2\right\}\)
\(\Rightarrow x=\left\{-8;-40;40;8\right\}\)
Lời giải:
a. Với $x,y$ nguyên thì $x-2, 2y+1$ nguyên.
Mà $(x-2)(2y+1)=8$ nên $2y+1$ là ước của $8$
$2y+1$ lẻ nên $2y+1=1$ hoặc $2y+1=-1$
Nếu $2y+1=1\Rightarrow x-2=8$
$\Rightarrow y=0; x=10$
Nếu $2y+1=-1\Rightarrow x-2=-8$
$\Rightarrow y=-1; x=-6$
b.
$8-x, 4y+1$ là số nguyên. Mà $(8-x)(4y+1)=20$ nên $4y+1$ là ước của $20$.
Mà $4y+1$ chia $4$ dư $1$ nên $4y+1\in \left\{1; 5\right\}$
Nếu $4y+1=1$ thì $8-x=20$
$\Rightarrow y=0; x=-12$
Nếu $4y+1=5$ thì $8-x=4$
$\Rightarrow y=1; x=4$
Tìm số nguyên x, y biết:
5/x+y/4=1/8
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\frac{5}{x}=\frac{1}{8}-\frac{y}{4}\)
\(\frac{5}{x}=\frac{1}{8}-\frac{2y}{8}\)
\(\frac{5}{x}=\frac{1-2y}{8}\)
\(\Rightarrow5.8=x.\left(1-2y\right)\)
\(\Rightarrow40=x.\left(1-2y\right)\)
Vì 1 - 2y là ước lẻ của 40 => x là ước chẵn của 40
Lập bảng ta có :
1-2y | 5 | -5 | 1 | -1 |
x | 8 | -8 | 40 | -40 |
y | -2 | 3 | 0 | 1 |
Tìm 2 số Nguyên X và Y biết 5/X + Y/4 = 1/8
1) 5/x = 1/8 - y/4 = (1-2y)/8
<=> x = 5*8/(1-2y) ; thấy 1-2y là số lẻ nên UCLN(8,1-2y) = 1
do đó x/8 = 5/(1-2y) (*)
x, y nguyên khi 1-2y phải là ước của 5
* 1-2y = -1 => y = 1 => x = -40
* 1-2y = 1 => y = 0 => x = 40
* 1-2y = -5 => y = 3 => x = -8
* 1-2y = 5 => y = -2 => x = 8
vậy có 4 cặp (x,y) nguyên (-40,1) ; (40, 0) ; (-8, -5) ; (8, 5)
k cho mh nha bạn
Tìm các số nguyên x, y biết rằng: (5/x)+(y/4)=1/8?
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}=>\frac{5}{x}=\frac{1}{8}-\frac{y}{4}=\frac{1}{8}-\frac{2y}{8}=\frac{1-2y}{8}=>x\left(1-2y\right)=5.8=40\)
ta có:1-2y là ước lẻ của 40
=>1-2y thuộc {01;1;-5;5}
thay vào rồi tìm x
(5/x)+(y/4)=1/8
<=>(5/x)+(2y/8)=1/8
<=>(5/x) =(1/8)-(2y/8)
<=>(5/x) =(1-2y/8)
=>x=8; (1-2y)=5 =>2y =1-5
Mà y thuộc Z =>2y thuộc Z =>2y = - 4
=>y=(-4):2= - 2. Vậy x = 8; y= - 2
tìm các số nguyên x và y,biết : 5/x + y/4 = 1/8
Ta có :
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\frac{5}{x}=\frac{1}{8}-\frac{y}{4}\)
\(\frac{5}{x}=\frac{1}{8}-\frac{2y}{8}\)
\(\frac{5}{x}=\frac{1-2y}{8}\)
\(\Rightarrow5.8=\left(1-2y\right).x\)
\(\Rightarrow40=\left(1-2y\right).x\)
Ta thấy 1 - 2y là ước lẻ của 40 nên x là ước chẵn của 40
Lập bảng ta có :
x | 40 | -40 | 8 | -8 |
1-2y | 1 | -1 | 5 | -5 |
y | 0 | 1 | -2 | 3 |
Vậy ...
x = 8
y = -2
Còn nữa hay ko mình ko biết
Còn lại tự tìm =)
Ta có : \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
=> \(\frac{5}{x}=\frac{1}{8}-\frac{y}{4}=\frac{1}{8}-\frac{2y}{8}=\frac{1-2y}{8}\)
=> \(x\left(1-2y\right)=5.8=40\)
Ta có: 1-2y là ước lẻ của 40
=> 1-2y thuộc { 1;-1;5;-5 }
( Bạn thay vào rồi tính x,y nha ).
Tìm số nguyên x,y biết
(x-3)(y+1)=8
đợi chút
cậu dựa vào mà làm
https://olm.vn/hoi-dap/detail/243878976157.html?pos=569260350605
Tìm số nguyên x,y biết
(x-3)(y+1)=8
vì x;y là số nguyên => x-3;y+1 là số nguyên
=> x-3 và y+1 thuộc Ư(8)
Ta có bảng:
x-3 | 1 | 8 | 2 | 4 | -1 | -8 | -2 | -4 |
y+1 | 8 | 1 | 4 | 2 | -8 | -1 | -4 | -2 |
x | 4 | 11 | 5 | 7 | 2 | -5 | 1 | -1 |
y | 7 | 0 | 3 | 1 | -9 | -2 | -5 | -3 |
Vậy..........................................................................................................................................